
                     INSAT-3D Incremental ATBD (MMDRPS), November 2018                   1 

 

 

(MMDRPS Incremental ATBD) 

November, 2018 



                     INSAT-3D Incremental ATBD (MMDRPS), November 2018                   2 

 

  



                     INSAT-3D Incremental ATBD (MMDRPS), November 2018                   3 

 

 

Table of Contents 
1. Snow-Cover Mapping (SCM) and Fractional Snow Cover (FSC) ........................................ 12 

1.1. Algorithm Configuration Information ................................................................................ 13 

2.2. Introduction .................................................................................................................... 13 

1.2.1. Overview and background ........................................................................................... 14 

1.2.2. Remote Sensing of Snow Cover .................................................................................. 15 

1.2.3. Objective ...................................................................................................................... 16 

1.3. Inputs and output data ........................................................................................................ 16 

1.3.1. Image and preprocessing data (Dynamic).................................................................... 16 

1.3.2. Other Auxillary data and Model Inputs (Static) ........................................................... 16 

1.4. Algorithm Functional Specifications .................................................................................. 17 

1.4.1. Overview ...................................................................................................................... 17 

1.4.2. Theoretical Background ............................................................................................... 18 

1.4.3. Operational Implementation ........................................................................................ 21 

1.5. Outputs ........................................................................................................................... 22 

1.5.1. Format of the output and the domain ........................................................................... 22 

1.6. Validation and Error Analysis ............................................................................................. 22 

1.6.1. Field Spectroradiometer data ....................................................................................... 22 

1.6.3. Comparison of INSAT 3D(R) snow maps with AWiFS snow products ...................... 22 

1.7. Future Scope ....................................................................................................................... 22 

2. Biomass Burning Emission Product ...................................................................................... 25 

2.1. Algorithm Configuration Information ................................................................................ 26 

2.2. Introduction ........................................................................................................................ 26 

2.3. Algorithm Overview ........................................................................................................... 27 

2.3.1 Algorithm flowchart (FRP approach) ........................................................................... 28 

2.3.2 Domain of operation ..................................................................................................... 30 

2.3.3 Global scenario ............................................................................................................. 30 

2.4. Assumptions and Limitations ............................................................................................. 30 

2.5. Validation ....................................................................................................................... 31 



                     INSAT-3D Incremental ATBD (MMDRPS), November 2018                   4 

 

3. Land Surface Albedo ............................................................................................................. 34 

3.1. Algorithm Configuration Information ................................................................................ 35 

3.2. Introduction ........................................................................................................................ 35 

3.3. Theoretical background ...................................................................................................... 36 

3.4. Methodology ...................................................................................................................... 37 

3.4.1.  Radiative transfer simulations..................................................................................... 38 

3.4.2.  Generation of narrow to broadband albedo conversion coefficients .......................... 40 

3.4.3.  Calibration of the TOA observations of INSAT-3D Imager sensor ............................ 40 

3.4.4.  Data used and generation of LSA ............................................................................... 40 

3.5. Results ................................................................................................................................ 41 

3.6.  Summary and Future scope ............................................................................................ 42 

4. Actual Evapotranspiration (AET) from INSAT 3D series ..................................................... 45 

4.1. Algorithm Configuration Information ................................................................................ 46 

4.2. Introduction .................................................................................................................... 46 

4.2.1. Overview and background ........................................................................................... 47 

4.2.2. Objectives .................................................................................................................... 48 

4.2.3.    Instrument and characteristics of input products ...................................................... 48 

4.3. Inputs .................................................................................................................................. 49 

4.3.1. Static data ..................................................................................................................... 49 

4.3.2. Image and pre-processing data (Dynamic) .................................................................. 49 

4.3.3. Other auxiliary data and model inputs ......................................................................... 50 

4.4.  Algorithm functional specifications ............................................................................... 51 

4.4.1. Clear sky Latent heat flux (λE clr) ................................................................................ 51 

4.4.2. Soil heat flux model ..................................................................................................... 52 

4.5.  LST retrieval under cloudy-sky ...................................................................................... 54 

4.5.1. Daily Evapotranspiration (ET) ..................................................................................... 54 

4.5.3. Steps for operational implementation .......................................................................... 55 

4.6.  Outputs ........................................................................................................................... 56 

4.7.  Validation ....................................................................................................................... 57 

4.7.1. Data required ................................................................................................................ 57 

4.8.  Sensitivity analysis of STIC model simulated latent heat flux on LST and Albedo ...... 57 



                     INSAT-3D Incremental ATBD (MMDRPS), November 2018                   5 

 

5. Net Surface Radiation (Rn) from INSAT series of data ......................................................... 63 

5.1.  Algorithm Configuration Information ............................................................................ 64 

5.2.  Introduction .................................................................................................................... 64 

5.2.1. Overview and background ........................................................................................... 65 

5.2.2. Objectives .................................................................................................................... 65 

5.2.3.   Instrument and characteristics of input products ....................................................... 66 

5.3.  Inputs .............................................................................................................................. 66 

5.3.1. Image and pre-processing data (Dynamic) .................................................................. 66 

5.3.2. Other auxiliary data and model inputs ......................................................................... 67 

5.3.3. Operational product of WRF short-range forecast ....................................................... 67 

5.4. Algorithm functional specifications ................................................................................... 68 

5.4.1. Clear sky net surface radiation (Rnclr) .......................................................................... 68 

5.4.2. Cloudy sky net surface radiation (Rncld) ....................................................................... 69 

5.4.3. Sensitivity Analysis ...................................................................................................... 70 

5.4.4. Steps for operational implementation .......................................................................... 71 

5.5.  Outputs ........................................................................................................................... 71 

5.5.1. Format of the output and the domain ........................................................................... 71 

5.6. Validation ............................................................................................................................ 72 

5.6.1. Data required ................................................................................................................ 72 

6. Daily Surface Net Shortwave Radiation over Indian Ocean using half-hourly Outgoing 

Longwave Radiation Data from Indian Geostationary Satellites .......................................... 76 

6.1. Algorithm configuration information ................................................................................. 77 

6.2. Introduction ........................................................................................................................ 77 

6.3. Physical basis of the SWR Algorithm ................................................................................ 79 

6.4. Formulation of the SWR Algorithm ................................................................................... 79 

6.5. Algorithm Flow Diagram ................................................................................................... 82 

6.6. Operational Implementation ............................................................................................... 82 

7. Clear Sky Brightness Temperature from INSAT-3D/3DR IMAGER .................................... 85 

7.1. Algorithm Configuration Information ................................................................................ 86 

7.2. Background ........................................................................................................................ 86 

7.3. Objective ............................................................................................................................ 87 



                     INSAT-3D Incremental ATBD (MMDRPS), November 2018                   6 

 

7.4. Inputs .................................................................................................................................. 87 

7.4.1. Image and preprocessing data (dynamic) .................................................................... 87 

7.5. Algorithm Functional Specifications .................................................................................. 87 

7.5.1. Overview ...................................................................................................................... 87 

7.5.2. Generation of CSBT .................................................................................................... 88 

7.5.3. Preparation of latitude-longitude grid .......................................................................... 88 

7.5.4. Averaging of parameters .............................................................................................. 88 

7.5.5. Quality indicators ......................................................................................................... 89 

7.6 Outputs ................................................................................................................................ 89 

7.6.1 Format of the output and the domain ............................................................................ 89 

7.7. Validation ............................................................................................................................ 89 

7.7.1. Data required ................................................................................................................ 89 

8. Clear-Sky Brightness Temperature Products from INSAT-3D/3DR Sounder ....................... 91 

8.1. Algorithm configuration information ................................................................................. 92 

8.2. Introduction .................................................................................................................... 92 

8.3. Algorithm Description.................................................................................................... 92 

8.3.1. Cloud detection ....................................................................................................... 92 

8.3.2. Clear-Sky Brightness Temperature computation .................................................... 96 

8.4. Outputs ............................................................................................................................... 97 

8.5. Validation ............................................................................................................................ 98 

9. Cloud Top Pressure/Cloud Top Temperature and effective cloud amount from INSAT-

3D/3DR IMAGER ................................................................................................................. 99 

9.1. Algorithm Configuration Information .............................................................................. 100 

9.2. Background ...................................................................................................................... 100 

9.3. Objective .......................................................................................................................... 101 

9.4. Inputs ................................................................................................................................ 101 

9.4.1. Static Data .................................................................................................................. 101 

9.4.3. Other Auxiliary data and Model Inputs ..................................................................... 102 

9.5. Algorithm Functional Specifications ................................................................................ 102 

9.5.1. Overview .................................................................................................................... 102 

9.5.2. Infrared Window Channel (WIN) method ................................................................. 103 



                     INSAT-3D Incremental ATBD (MMDRPS), November 2018                   7 

 

9.5.3. Water Vapor−Infrared Window Intercept Method (H2O) .......................................... 103 

9.5.4. Cloud top height and cloud top temperature from cloud top pressure ....................... 105 

9.5.5. Effective cloud amount .............................................................................................. 105 

9.5.6. Radiance bias adjustment ........................................................................................... 105 

10. Cloud Top Pressure/Cloud Top Temperature from INSAT-3D/3DR SOUNDER ................. 108 

10.1. Algorithm Configuration Information ............................................................................ 109 

10.2. Introduction .................................................................................................................... 109 

10.2.1. Overview and background .................................................................................... 109 

10.2.2. Objective ............................................................................................................... 109 

10.3. Inputs ......................................................................................................................... 110 

10.3.1. Static Data ................................................................................................................. 110 

10.3.2. Sounder data (dynamic) ............................................................................................ 110 

10.3.3. Other Auxiliary data and Model Inputs ................................................................. 110 

10.4. Algorithm Functional Specifications ......................................................................... 111 

10.5. Algorithm Theoretical Description ............................................................................ 112 

10.6. Physical Basis of the Cloud Top Pressure/Temperature/Height Algorithm ............... 112 

10.6.1. CO2 Slicing: Mid- to High-Level Clouds ................................................................. 112 

10.6.2. Window Channel method for cloud top pressure for low to mid clouds ............... 116 

10.7. Cloud top height and cloud top temperature from cloud top pressure ...................... 116 

10.8. Radiance bias adjustment .......................................................................................... 117 

11. INSAT-3D Cloud Microphysical Product ............................................................................ 120 

11.1. Algorithm configuration information ............................................................................. 121 

11.2. Introduction .................................................................................................................... 121 

11.3. Overview and Background ............................................................................................. 121 

11.4. Objective ......................................................................................................................... 122 

11.5. Inputs .............................................................................................................................. 122 

11.5.1. Static data ................................................................................................................. 122 

11.5.2. Dynamic data ........................................................................................................... 122 

11.5.3. Other Auxillary data and Model Inputs .................................................................... 123 

11.6. Algorithm Functional Specifications .............................................................................. 123 

11.6.1. Overview .................................................................................................................. 123 



                     INSAT-3D Incremental ATBD (MMDRPS), November 2018                   8 

 

11.6.2. Theoretical Background ........................................................................................ 123 

11.6.3. Algorithm Overview ............................................................................................. 124 

11.6.4. Flow Chart ............................................................................................................ 125 

11.7. Operational retrieval implementation ....................................................................... 125 

11.8. Output (over Ocean) ................................................................................................. 126 

11.9. Initial Validation ............................................................................................................. 126 

11.10. Limitations .................................................................................................................... 127 

11.11. Future work ................................................................................................................... 127 

12. 5-Day Composite Atmospheric Motion Vectors (AMV) ..................................................... 129 

12.1. Algorithm Configuration Information ............................................................................ 130 

12.2.  Introduction .............................................................................................................. 130 

12.3. Overview and background ........................................................................................ 130 

12.4. Objective ................................................................................................................... 131 

12.5. Inputs ........................................................................................................................ 132 

12.5.1. Retrieved AMVs (Dynamic) .................................................................................... 132 

12.6. Algorithm Functional Specifications ........................................................................ 132 

12.6.1. Methodology ............................................................................................................ 132 

12.6.2. Operational Implementation .................................................................................... 132 

12.7. Outputs...................................................................................................................... 133 

13. High Resolution Visible Winds (HRVIS) ............................................................................ 134 

13.1. Algorithm Configuration Information ............................................................................ 135 

13.2. Introduction .................................................................................................................... 135 

13.2.1. Overview and background .................................................................................... 135 

13.3. Inputs .............................................................................................................................. 136 

13.3.1 Static Data ............................................................................................................. 136 

13.3.2. Image and preprocessing data (Dynamic)............................................................. 136 

13.3.3. Other Auxiliary data and Model Inputs ................................................................... 137 

13.4. Algorithm Functional Specifications .............................................................................. 137 

13.4.1. Tracer selection: ....................................................................................................... 137 

13.4.2. Height assignment .................................................................................................... 138 

13.4.3. Tracking ................................................................................................................... 139 



                     INSAT-3D Incremental ATBD (MMDRPS), November 2018                   9 

 

13.4.4. Wind buffer generation and Quality control ............................................................ 140 

13.5. Operational Implementation ........................................................................................... 142 

13.6. Outputs...................................................................................................................... 143 

13.6.1. Format of the output and the domain ....................................................................... 143 

13.7. Validation .................................................................................................................. 144 

13.7.1. Data required ......................................................................................................... 144 

13.7.2. Methods of validation ........................................................................................... 144 

13.8. Technical Issues (Limitations etc.) ........................................................................... 145 

14. Atmospheric Motion Vectors: Staggering ............................................................................ 149 

14.1. Algorithm Configuration Information ............................................................................ 150 

14.2.  Introduction .............................................................................................................. 150 

14.2.1. Overview and background ....................................................................................... 150 

14.2.2. Objective .................................................................................................................. 151 

14.3. Inputs .............................................................................................................................. 151 

14.3.1. Static Data ................................................................................................................ 151 

14.3.2. Image and pre-processing data (Dynamic) .............................................................. 152 

14.3.3. Other Auxiliary data and Model Inputs ................................................................... 152 

14.4.  Algorithm Functional Specifications ........................................................................ 152 

14.4.1. Methodology ............................................................................................................ 152 

14.5.  Outputs...................................................................................................................... 156 

14.6  Validation .................................................................................................................. 157 

14.6.1. Data required ............................................................................................................ 157 

14.6.2. Methods of validation ........................................................................................... 157 

14.7. Technical Issues (Limitations etc) ............................................................................ 158 

15. Modified GPI and IMSRA method ...................................................................................... 161 

15.1. Algorithm Configuration Information ............................................................................ 162 

15.2.    INTRODUCTION ....................................................................................................... 162 

15.2.1 Overview ................................................................................................................... 163 

15.2.2. Objectives ................................................................................................................ 165 

15.3. Inputs ........................................................................................................................ 167 

15.3.1. Image and preprocessing data (Dynamic) ................................................................ 167 



                     INSAT-3D Incremental ATBD (MMDRPS), November 2018                   10 

 

15.3.2. Other Auxiliary data and Model Inputs ................................................................... 168 

15.4. Algorithm Functional Specifications ........................................................................ 169 

15.4.1. Overview: .............................................................................................................. 169 

15.5 Outputs ......................................................................................................................... 181 

Format of the output............................................................................................................. 182 

15.6. Validation .................................................................................................................. 182 

15.6.1. Data Required: ......................................................................................................... 183 

15.6.2. Method of Validation: .............................................................................................. 183 

15.7. Merged Rain Products (IMSRA and Rain Gauges):....................................................... 184 

15.7.1. Major Conclusions ................................................................................................... 185 

15.8. Future Scope ............................................................................................................. 186 

16. MIR Reflectance .................................................................................................................. 192 

16.1. Algorithm Configuration Information ............................................................................ 193 

16.2. Introduction .............................................................................................................. 193 

16.2.1. Overview and background .................................................................................... 193 

16.2.2. Objective ............................................................................................................... 194 

16.3. Inputs ........................................................................................................................ 194 

16.3.1. Static data .............................................................................................................. 194 

16.3.2 Image and pre-processing data (Dynamic) ........................................................... 194 

16.4. Algorithm Functional Specifications ........................................................................ 195 

16.4.1. Overview .................................................................................................................. 195 

16.4.2. Operational retrieval Implementation ...................................................................... 197 

16.5. Outputs ........................................................................................................................... 197 

16.5.1. Format of the output and the domain ....................................................................... 197 

16.6. Validation ........................................................................................................................ 197 

16.6.1. Data required ............................................................................................................ 197 

16.6.2. Methods of validation .............................................................................................. 198 

16.7 Technical issues (limitation etc.) ..................................................................................... 198 

16.8 Future Scope .................................................................................................................... 198 

17. Potential evapotranspiration (PET) from INSAT 3D insolation product and short-range 

forecasts ............................................................................................................................... 199 



                     INSAT-3D Incremental ATBD (MMDRPS), November 2018                   11 

 

17.1. Algorithm Configuration Information ............................................................................ 200 

17.2. Introduction .................................................................................................................... 200 

17.2.1. Overview and background ........................................................................................... 201 

17.2.2.  Objectives ................................................................................................................... 202 

17.2.3.    Instrument and characteristics of input products ...................................................... 202 

17.3. Inputs .............................................................................................................................. 205 

17.4. Algorithm functional specifications ............................................................................... 205 

17.5.  Outputs ........................................................................................................................... 211 

17.6. Validation of INSAT 3D generated daily Potential evapo-transpiration ........................ 212 

17.7. Study of Potential Evapo-transpiration with K1 VHRR data ......................................... 212 

17.8. Sources of errors / uncertainties in ETo estimates and validation issues ........................ 225 

17.9. Future scope of improvement ......................................................................................... 226 

 

 

  



                     INSAT-3D Incremental ATBD (MMDRPS), November 2018                   12 

 

 
 

 

 

 

1. Snow-Cover Mapping (SCM) and Fractional Snow Cover (FSC) 
 

S. No. Product Name Spatial Resolution Temporal 

Resolution 

1.  Snow-Cover Mapping (SCM)   4 x 4 km2  daily 

2.  Fractional Snow Cover (FSC) 4 x 4 km2 daily 
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1.1. Algorithm Configuration Information 

1.1.1. Algorithm Name  

Snow Cover Mapping (SCM) and Fractional Snow Cover (FSC). 

(Ref: IMD RFP Sec. 11.9) 

1.1.2. Algorithm Identifier 

ISRO_INSAT_SCM_A001 

1.1.3. Algorithm Specification 

 

Version Date Modified by Description 

1.0  

 

28.08.2018 S. K. Singh and 

Naveen Tripathi 

Snow Cover Mapping & Fractional 

Snow Cover 

 

2.2. Introduction 

Algorithms is developed to map snow cover using INSAT 3D(R) Meteorological payload. The 

snow mapping algorithm uses a grouped-criteria technique using the Normalized Difference Snow 

Index (NDSI) and other spectral threshold tests to identify snow on a pixel-by-pixel basis, and to 

map snow cover in dense forests. The NDSI is useful for snow mapping, as snow reflects strongly 

in the visible region but absorbs in the short-wave IR (SWIR) part of the spectrum. The reflectance 

of clouds is high in the visible as well as short-wave IR. This characteristic is used to identify and 

map snow cover. Coarse resolution binary snow product from INSAT 3D imager will be further 

used to generate fractional snow cover product in synchronous with available high resolution snow 

cover products.  

Validation of the INSAT snow maps will be carried out using snow products of AWiFS data of 

Resourcesat1/2 and a limited amount of field measurements. In addition, validation will also be 

carried out using visual interpretation and the MODIS derived snow maps. The accuracy of the 

snow maps may vary with land-cover type. Hence, the Snow map algorithm has been and will 

continue to be tested for a variety of land covers. Error estimates have been determined from field 

measurements for different land covers, and these errors are used to estimate the expected 

maximum monthly and annual errors in Himalayan snow mapping using the algorithm. 
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1.2.1. Overview and background 

The purpose of the snow-mapping algorithm is to generate Himalayan snow cover product from 

INSAT 3D(R) data. This algorithm is based on the ratio techniques, which was used successfully 

to monitor snow using AWiFS data of Resourcesat-1. Daily snow and 10 days snow covered digital 

map products will be generated.  

Snow covers almost 40 per cent of the Earth's land surface during Northern Hemisphere winter. 

This makes snow albedo and area an important component of the Earth's radiation balance (Foster 

and Chang, 1993).  Large areas in the Himalayas are covered by snow during winter time. Area of 

snow can change significantly during winter and spring. This can affect stream flow during spring 

and summer of the rivers originating in the Higher Himalayas. In addition, snow pack ablation is 

highly sensitive to climatic variation. Increase in atmospheric temperature can influence snowmelt 

and stream runoff pattern (Kulkarni et al. 2002a). Therefore, mapping of areal extent and 

reflectance of snow is an important parameter for various climatological and hydrological 

applications. In addition, extent of snow cover can also be used as an input for avalanche 

investigation. 

Snow was first observed in April 1960 by TIROS-1 satellite in eastern Canada. Since then, the 

potential for operational satellite-based mapping has been enhanced by the development of higher 

temporal-frequency and satellite sensors with higher spatial resolution. In addition, satellite 

sensors with better radiometric resolutions, such as MODIS and AWiFS have been used 

successfully for snow mapping (Hall et al. 2002; Kulkarni et al. 2006). This is possibly due to 

distinct spectral reflectance characteristics of snow in visible and short wave infrared region. 

Information generated from satellite observations has been extensively used for snowmelt runoff 

modeling (Kulkarni et al. 2002b). Remote sensing technique has been extensively used for snow 

cover monitoring in the Himalayan region with the help of numerous satellite sensors (Kulkarni 

and Rathore, 2003). Various analysis techniques as visual, hybrid (Visual and supervised 

classification) have been used to estimate areal extent of snow cover (Kulkarni and Rathore, 2003). 

However, major difficulty in snow cover monitoring using automated technique in the Himalayan 

region is mountain shadow and confusing signature of snow and cloud in the visible and near 

infrared region. Because of above-mentioned reasons, combination of digital and visual 

interpretation technique is needed to monitor snow cover. This makes snow cover mapping 

cumbersome and time consuming. To overcome this problem normalized difference snow index 

method is developed and discussed in this document. In optical region snow reflectance is higher 

as compared to other land features as grass, rock and water. However, in SWIR region snow 

reflectance is lower than rock and vegetation (Kulkarni et al. 2002c). Therefore, snow on satellite 

images appears white in visible and black in SWIR region.  This characteristic has been effectively 

used to develop Normalized Difference Snow Index (NDSI) for snow cover mapping (Hall et al. 

1995).  
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1.2.2. Remote Sensing of Snow Cover 

One of the earliest methods used for snow cover monitoring was visual interpretation. During this 

investigation Large Format Optical Enlarger was used and investigation was carried out using band 

2 of Landsat MSS and IRS LISS-I sensor. The investigation was extensively used for snow cover 

monitoring in Malan, Tosh and many small basins in the Himalayas (Kulkarni et al. 2004).  

This technique was further modified with advancement of Digital Analysis Technique and 

availability of higher frequency satellite data such as WiFS of IRS and VHRR of NOAA satellite. 

In this technique, a combination of visual and digital analysis was used. This was necessary 

because mountain shadows in the months from November to February normally make it difficult 

to use only digital technique for snow cover delineation. From the month of March mountain 

shadows are negligible and snow extent can be estimated from supervised classification technique. 

This technique has been extensively used to map snow cover in Western Himalaya, Baspa and 

Satluj basins (Kulkarni and Rathore, 2003).  

Another major difficulty in snow cover monitoring is cloud cover. It is further compounded due to 

similar reflectance characteristics of snow and cloud. The discrimination between snow and cloud 

can be done by using various techniques such as textural analysis, association with shadow and by 

using multi temporal analysis. In Himalayas and in present investigation, snow/cloud 

discrimination was done by using texture, where snow shows characteristic mountainous pattern, 

which cannot be seen when area is cloud covered.  In visible and near infrared region reflectance 

of snow and cloud is very high. Therefore, discrimination between snow and cloud is not possible. 

This is because of similar reflectance characteristics in this region. In spectral range between 1.55-

1.75 m, 2.1-2.35 m and 3.55-3.93 m have shown potential for snow/cloud discrimination. In 

these bands, snow has lower reflectance than cloud. Spectral region between 1.55-1.75 m has 

been successfully used to separate certain types of clouds from snow (Kulkarni et al. 2006). 

Reflectance of fresh snow is very high in the visible part of the electromagnetic spectrum, but 

decreases in the near-IR especially as grain size increases (O'Brien and Munis, 1975; Warren and 

Wiscombe, 1980; Srinivasulu et al. 2002). In addition, soot from industrial pollution becomes 

incorporated into the snowpack and this may decrease albedo and enhance snowmelt (Clarke and 

Noone, 1985; Negi et al. 2006). Both because of natural aging and other factors (e.g. soot or 

volcanic ash deposition), the reflectance of snow decreases over time. Fresh snow can have a 

reflectance (integrated over the reflective part of the spectrum) up to about 80 percent but its 

reflectance may decrease to below 40 percent after snow crystals metamorphose.  

Snow, like all natural surfaces, is an anisotropic reflector (Nolin and Liang, 2000). The reflectance 

from snow is high in the forward direction and is largely specular. While freshly fallen snow can 

be nearly a Lambertian reflecting surface, as snow metamorphoses the specular component 

characteristic of forward scattering increases. 
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1.2.3. Objective 

The purpose of the snow-mapping algorithm is to generate Himalayan snow cover product from 

INSAT 3D(R) data. This algorithm is based on Normalised Difference Snow Index method, which 

was used successfully to monitor snow using AWiFS data of Resourcesat. Daily snow and 

maximum 10-day snow covered area digital-map products will be generated.  

This algorithm will be further modified, with NDVI adopted from other sources and infrared 

brightness temperature to identify snow in forest covers and identify cloud pixels, respectively.  

1.3. Inputs and output data 

1.3.1. Image and preprocessing data (Dynamic) 

Parameter Resolution Quantization Accuracy 

Radiometric and geometric corrected gray 

count values Visible (0.52-0.75 m) & 

SWIR (1.55-1.70 m) 

pixel 10 bit - 

Radiometric and geometric corrected gray 

count values of TIR-1 channel (10.2-11.2 

m) 

pixel 10 bit - 

Gray value to brightness temperature 

conversion table 

- - 0.3 K 

Geolocation file Pixel - 1 pixel 

1.3.2. Other Auxillary data and Model Inputs (Static) 

Source Product Frequency Role in algorithm Purpose 

Carto/Gtopo DEM Once Mask Masking low altitude 

area  

Reflectance 

library using 

Field 

observations 

Reflectance 

in visible and 

SWIR region 

As per 

requirement 

NDSI threshold 

value 

Development and 

validation of 

algorithm 

AWiFS Snow Cover 5 days Identification of 

snow pixel in 

INSAT grid 

Generating fractional 

snow cover product 

of INSAT 
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1.4. Algorithm Functional Specifications 

1.4.1. Overview 

A grouped-criteria technique incorporating NDSI and threshold-based criterion for the algorithm 

was selected for the following reasons:  

 Sensors with better radiometric resolutions, such as MODIS and AWiFS, have been used for 

generating the snow products using similar algorithm. (Hall et al., 1995; Kulkarni et al., 2006; 

Singh et al., 2013; Rathore et al., 2015).   

 The technique can map snow under mountain shadow and independent of local solar 

illumination angle. It makes this algorithm highly suitable for mountainous terrain as 

Himalayas (Kulkarni et al. 2006). 

 INSAT 3D(R) Met payloads has a channel in 1.55 to 1.75 m with 1 km spatial resolution. 

Similar channel is not available on GOES satellite. In addition, channel number INSAT 3D(R) 

1&2 channels are having 1 km spatial resolution. Therefore, product can be generated at 1 km 

resolution.  

 SWIR reflectance/Brightness temperature will be used to identify certain type of clouds which 

were not separated using NDSI threshold. Threshold values will be fine-tuned. This will be 

initially established using Spectral Reflectance library of Space Applications Centre and then 

sensitivity analysis of INSAT-3D(R) data. 

 AWiFS derived snow cover products will be used to estimate snow part in synchronous INSAT 

pixel to develop approach for estimating fractional snow cover product for INSAT data. 

It runs automatically, without human intervention. It is straightforward, computationally frugal, 

and thus easy for the user to understand exactly how the product is generated.  

Snow has strong visible reflectance and strong short-wave IR absorbing characteristics. The 

Normalized Difference Snow Index (NDSI) is an effective way to distinguish snow from many 

other surface features. Both sunlit and some shadowed snow is mapped effectively. A similar index 

for vegetation, the Normalized Difference Vegetation Index (NDVI) has been proven to be 

effective for monitoring global vegetation conditions throughout the year (Tucker, 1979 and 1986). 

Additionally, some snow/cloud discrimination is accomplished using the NDSI.  

Other promising techniques, such as traditional supervised multispectral classifications, spectral-

mixture modeling, or neural-network analyses have not yet been shown to be usable for automatic 

application at the mountainous region. They are also computationally intensive. Training or the 

interaction of an interpreter is required for successful application of techniques such as neural-

network analysis. These techniques may progress to regional applications and possibly even global 

application in future years. 
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In fractional snow cover, presently snow cover products derived using AWiFS data will be used to 

develop the approach. INSAT derived snow was matched with synchronous AWiFS snow pixels 

which was used to develop a relationship for snow fraction of INSAT pixel.   

1.4.2. Theoretical Background 

 1.4.2.1. Snow cover map 

The snow-cover mapping algorithm is designed to identify snow in each 1 km pixel. A regional, 

daily snow product will be produced. A 10-day composite snow cover product will be generated 

by compositing successive days of snow cover products. This will yield maximum snow extent for 

the 10-day period. If a pixel were snow covered on any orbit during that period, then that pixel 

will be mapped as snow covered even if it were snow-free on all of the other orbits during the 10-

day period. Other coverage and persistence statistics will also be included to assist analysis of the 

data product.  

There has been much discussion concerning the optimum composite period for the snow maps 

(Kulkarni et al, 2006). While weekly composites would correspond with the NOAA/NESDIS maps 

and the NOHRSC maps, some modelers are interested in longer composition periods, e.g., 7 days 

to one month. 8-day composites were chosen because this period optimizes the ground coverage 

from the MODIS instrument. In India, the hydrological data analysis is carried out on 10-daily 

basis; therefore 10-day composite will be prepared.  If a researcher wants to produce a composite 

product for any period other than a 10-day period, from our daily product, this can be done using 

the daily data.  

1.4.2.2.  Normalized Difference Snow Index (NDSI) 

The NDSI is useful for the identification of snow and for separating snow and most cumulus 

clouds. The NDSI is a measure of the relative magnitude of the characteristic reflectance difference 

between the visible and short-wave IR reflectance of snow. The NDSI is insensitive to a wide range 

of illumination conditions (Kulkarni et al. 2006). The NDSI is analogous to the normalized-

difference vegetation index (NDVI) (Tucker, 1979 and 1986; Townshend and Tucker, 1984). NDSI 

can be computed as given below; 

  NDSI = (VisibleINSAT B1 - SWIRINSAT B2) / (VisibleINSAT B1 + SWIRINSAT B2)  

Pixels that are approximately 75% or greater covered by snow were found to have NDSI values 

more than 0.4 in our field investigation at Dhundi test site in Himachal Pradesh (Negi et al. 2006). 

These NDSI thresholds have been verified from detailed analysis of numerous AWiFS scenes, 

comparisons with supervised-classification techniques and NDSI technique. (Kulkarni et al, 2004). 

Pure snow has a high NDSI but NDSI decreases as other features are mixed in a pixel. Snow in 

mixed pixels has an NDSI that is less than that for pure snow. Pure snow can be distinguished by 

its high NDSI value (Negi et al. 2006).  Since bandwidth of AWiFS band 1 and INSAT 3D(R) 

imager is different, initially NDSI threshold value will be established using Field Spectral Data 
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Library of Space Applications Centre (Singh et al. 2005 and Negi et al. 2006). This will be further 

evaluated during post launch period, by carrying out sensitivity analysis (Kulkarni et al. 2006).  

In forested locations, many snow covered pixels have an NDSI lower than 0.4. To correctly classify 

these forests as snow covered, a lower NDSI threshold is necessary (Negi et al. 2006). NDVI and 

NDSI will be used together in order to discriminate between snow-free and snow covered forests. 

Forested pixels have higher NDVI values compared with non-forested pixels. Thus by using the 

NDSI and NDVI in combination, it is possible to lower the NDSI threshold in forested areas 

without compromising the algorithm performance for other land covers. Since appropriate bands 

are not available in INSAT 3D(R) payload, mask will be used from other existing source. 

Since water may also have an NDSI 0.4, therefore permanent mask is necessary to separate water 

from snow. 

1.4.2.3. Snow / Cloud Discrimination 

Snow/cloud-discrimination techniques are based on differences between cloud and snow 

reflectance and emittance characteristics. Clouds are highly variable and may be detected by their 

generally high reflectance in the visible and near-IR parts of the electromagnetic spectrum 

(Kulkarni et al. 2002a), whereas the reflectance of snow drops in the short-wave infrared part of 

the spectrum.  

While the NDSI can separate snow from most obscuring clouds, it does not always identify or 

discriminate optically-thin cirrus clouds from snow. Analyses of AWiFS and MODIS data show 

that NDSI can map snow under cirrus clouds at least some of the time. Cirrus clouds have high 

reflectance in SWIR region than snow which requires fine tuning of threshold value and will be 

used as an additional criterion in present approach. This algorithm will further be improved due to 

availability of thermal bands in INSAT 3D(R) Met payload. Appropriate brightness temperature 

threshold will be used to separate cloud from snow (Romanov and Tarpley, 2003) or cloud removal 

will also be tested using cloud mask product subject to its availability as an additional INSAT 

3D(R) derived product. This will be additional criteria than in built criteria of NDSI. 
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1.4.2.4. Flow Chart 
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1.4.2.5. Sensitivity analysis to establish NDSI threshold 

In order to establish credible threshold value of NDSI for snow cover mapping, sensitivity tests of 

individual threshold values were carried out. Sensitivity analysis will be carry out to identify NDSI 

threshold for INSAT 3D(R) snow products. This threshold value will also be verified using FFC 

combination for snow covered area identification.  

1.4.2.6. Fraction Snow Cover 

Snow binary product of INSAT 3D data, available at coarse resolution, will be used to convert into 

fractional snow cover which will be helpful to improve the snow cover areal extent based on 

occupancy of that pixel in terms of actual snow fraction present in respective pixel of INSAT 3D. 

Synchronous INSAT and high resolution satellite derive NDSI and snow cover product were 

selected for the winter season. Different months and terrain in Himalayan region was chosen to 

represent to take care possible scenarios. INSAT derived NDSI and snow pixel was compared with 

NDSI and snow pixel for high resolution data to develop a relationship between NDSI and snow 

cover areal extent for coarse and fine resolution datasets. This develop relationship will be used to 

generate fractional snow cover area for INSAT dataset and will be helpful to improve daily snow 

cover areal extent from geostationary platform.      

1.4.3. Operational Implementation 

Step 1 : Conversion from gray count to Reflectance and BT: 

In this step, the DN values will be converted into Radiance, Reflectance and Brightness 

temperature using calibration coefficient available with INSAT 3D(R) data. The radiometrically 

processed data will also be geolocated and this will provide a radiometrically and geometrically 

corrected product to be used further in algorithm. 

Step 2 : Cloud elimination 

This step includes the cloud screening from the INSAT 3D(R) image. Cloud screening is based on 

SWIR reflectance/temperature data, or cloud mask product will be used subject to its availability, 

and this will help to clear cloudy pixels. 

Step 3 : Generation of NDSI image 

Normalized Difference Snow Index will be computed using the normalized ratio of visible and 

SWIR channel as given below; 

NDSI = (R INSAT B1 – R INSAT B2) / (R INSAT B1 – R INSAT B2) 

where R is the reflectance of the respective channel. 

Step 4: Generation of Fractional snow pixel 

A developed relationship will be used to convert INSAT 3D coarse resolution pixel into fractional 

snow cover pixel for the respective pixel. 
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Accuracy of SCM and FSC is expected to be approximately 90% or better.   

1.5. Outputs 

 

Parameter Unit Min Max Accuracy Resolution 

SCM 4*4 km2 - - - Pixel level 

FSC km2 - - - Pixel level 

 

1.5.1. Format of the output and the domain 

Geolocated Snow cover and fraction snow cover map of INSAT dataset, focusing on Hindukush-

Karakoram-Himalayan region. 

1.6. Validation and Error Analysis 

1.6.1. Field Spectroradiometer data 

Field data of snow and other ambient objects will be collected and analyzed for the wavelength 

bands in INSAT 3DR. These value will be used to verify NDSI threshold to discriminate snow 

from other existing land cover features. 

1.6.2. Visual Snow Cover Map 

Snow cover pixel will be identified visually and will be verified on automated snow cover product 

generated using INSAT 3D(R). This may also be extended to visually map snow covers and 

validate these map with operationally derive snow cover products.  

1.6.3. Comparison of INSAT 3D(R) snow maps with AWiFS snow products  

INSAT-derived snow maps will continue to be compared with snow cover maps generated by 

AWiFS. In addition, comparisons will be made between MODIS maps. Comparison of Snowmap 

results with these independently produced snow data sets will allow errors to be identified that will 

permit us to determine the accuracy of the global maps relative to one another.  

 

1.7. Future Scope 

This algorithm will be further modified, in conjunction with NDVI (available from AWiFS product 

or any other source) and infrared brightness temperature to identify snow in forest covers and 

identify cloud pixels, respectively. INSAT 3D being a coarse resolution satellite, Approach using 

AWiFS snow products has been developed, however scatterplot shows a spread over different 

range which could be due to geolocation error. An attempt will also be made using different 

techniques such as homogeneity test, histogram matching etc. to reduce the scatter due to mismatch 
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probably arising due to geolocation error. This will further help to improve fractional snow cover 

product to improve the accuracy of snow cover areal extent.  
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2. Biomass Burning Emission Product  
 

S. No. Product Name Spatial Resolution Temporal Resolution 

1 BBEP 4 km x 4 km  30 minutes 
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2.1. Algorithm Configuration Information 

2.1.1. Algorithm Name  

Biomass burning emission product (BBEP) 

2.1.2. Algorithm Identifier 

BBEM 

2.1.3. Algorithm Specification 

Version Date Modified by Description 

1.0  

 

June 2018 C. P. Singh Biomass Burning Emission Product 

 

2.2. Introduction 

Near-real-time estimates of biomass burning emissions are crucial for air quality monitoring. This 

algorithm theoretical basis document (ATBD) provides a description of new fire characterization 

science product, specifically named as, biomass burning emission product (BBEP) utilizing the 

INSAT-3D/3DR Imager.  The INSAT active fire algorithm is a dynamic multispectral thresholding 

contextual algorithm that is based on the sensitivity of the 3.9 μm (MIR channel) to high 

temperature sub-pixel anomalies relative to the less sensitive 10.8 μm (TIR-1 Channel). The 

current operational version of the INSAT fire product provides information on the location of the 

fire pixel only. In order to characterize the fire in terms of BBEP further details like estimates of 

instantaneous sub-pixel fire size, temperature, and radiative power; ecosystem type; and a 

classification flag needs to be worked out at pixel level.  The fire properties are coupled to each 

other, one cannot calculate an instantaneous fire size without estimating a fire temperature, and 

fire radiative power (FRP) is a function of size and temperature. The algorithm will work upon 

accurate estimation of satellite-derived fire radiative power (FRP) for individual fire pixels. The 

INSAT-3D/3DR satellites observe wildfires at an interval of 15–30 min. Because of the impacts 

from sensor saturation, thin cloud cover, and background surface, the FRP values will not be 

continuously observed. The missing observations will be simulated by combining the available 

instantaneous FRP observations within a day and a set of representative climatological diurnal 

patterns of FRP for various ecosystems (evergreen forests, semi-evergreen and deciduous forests 

with their densities like dense, medium and open forests). Finally, the simulated diurnal variation 

in FRP will be applied to quantify biomass combustion and emissions in individual fire pixels with 

a latency of 1 day (0300 UTC – 0230 UTC for INSAt-3D & 0315 UTC to 0245 UTC for 3DR; 

following day). It is expected that near-real-time hourly emissions from BBEP would provide a 

crucial component for atmospheric and chemical transport modelers to forecast air quality and 

weather conditions. 
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2.3. Algorithm Overview 

Biomass burning emissions can be modeled using four fundamental parameters; burned area, fuel 

loading (biomass density), the fraction of biomass combustion, and the factors of emissions for 

trace gases and aerosols. By integrating these parameters, biomass burning emissions can be 

estimated using the following formula (Seiler and Crutzen, 1980): 

E = DM * F = A * B * C * F ………………….(1) 

Where, E = emissions from biomass burning (kg);  

DM = dry fuel mass combusted (kg);  

F = factor of consumed biomass that is released as trace gases and smoke particulates 

A = burned area (km2);  

B = biomass density (kg/km2);  

C = fraction of biomass consumed during a fire event.  

 

This simple model has been widely applied to estimate fire emissions in local, regional, and global 

scales (Ito and Penner, 2004; Reid et al., 2004; Wiedinmyer et al., 2006; van der Werf et al., 2006; 

Zhang et al., 2008). The accuracy of the emissions depends strongly on the quality of fuel loading 

and burned area estimates, which have high uncertainties (Zhang et al., 2008; van der Werf et al., 

2010; French et al., 2011). Alternatively, Wooster, 2002 demonstrated a linear relationship between 

fuel consumption and total emitted fire radiative energy. This is due to the fact that the total amount 

of energy released per unit mass of dry fuel fully burned is weakly dependent on vegetation types 

and fuel types, which ranges between 16 and 22 MJ/kg (Lobert and Warnatz, 1993; Whelan, 1995; 

Trollope et al., 1996; Wooster et al., 2005). Thus, biomass burning emission is linearly linked to 

fire radiative energy in a simple formula (Wooster, 2002): 

……………………..(2) 

Where; FRP = fire radiative power (MW);  

FRE = fire radiative energy (MJ);  

t1 and t2 = beginning and ending time (second) of a fire event;  

β = biomass combustion rate (kg/MJ) 

F = emission factor (g/kg for CO and PM2.5) 

FRE represents the combination of total burned area and the dry fuel mass combusted (e.g., live 

foliage, branches, dead leaf litter, and woody materials) in a given time period, which reduces error 

sources of parameter measurements comparing with the first approach (eq.1) employing both 

burned area and fuel loading in the estimates of biomass burning emissions. Thus, the FRP 

approach will be better to produce BBEP. 
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2.3.1 Algorithm flowchart (FRP approach) 

Once a fire is identified, Fire Radiative Power (FRP) estimation algorithm will be applied. FRP is 

theoretically a function of fire size and fire temperature. It is empirically related to the difference 

of brightness temperature between a fire pixel and ambient background pixels at the middle 

infrared (MIR) band (Kaufman et al., 1998). Further, FRP is approximated as the difference of 

MIR spectral radiances between a fire pixel and ambient background pixels in a linear form 

(Wooster et al., 2003). The proposed method is based on the assumption that Fire Radiative Power 

(FRP) is empirically related to the difference of brightness temperature between a fire pixel and 

ambient background pixels at the middle infrared (MIR) channel. Biomass burning emission will 

be computed using eq.2 (Wooster, 2002) below: 

E = ∫
��

��
 FRPdt x ß x F 

β is biomass combustion rate (kg/MJ) which is assumed to be a constant. It is 0.368 ±0.015 kg/MJ 

based on field controlled experiments regardless of the land surface conditions (Wooster et al., 

2005). This coefficient has been accepted for the calculation of biomass burning emissions from 

MODIS FRP, SEVERI FRP and GOES FRP (Roberts et al., 2009; Ellicott et al., 2009, Zhang et 

al., 2012), and so this value will be adopted. 

F is emission factor (a representative value that is used to represent the quantity of a trace gas or 

aerosol species released into the atmosphere during a forest fire activity. The value is a function of 

fuel type and is expressed as the number of kilograms of particulate per ton (or metric ton) of 

material or fuel. The value for F will be assigned for each emitted species (CO and PM2.5) with 

land cover type according to values published in literature (Andreae and Merlet, 2001; Wiedinmyer 

et al., 2006). Specifically, the emission factors will be assigned to stratified land cover types: e.g. 

11.07 g/kg (PM2.5) and 77 g/kg (CO) in forests, 5.6 g/kg (PM2.5) and 84 g/kg (CO) in shrublands, 

9.5 g/kg (PM2.5) and 90 g/kg (CO) in grasslands, and 5.7 g/kg (PM2.5) and 70 g/kg (CO) in 

croplands. 

Although INSAT-3D/R satellites observe the surface every 15–30 min, observations of diurnal 

fires may, to a great extent, be obstructed by the impact factors including cloud cover, canopy 

cover, heavy fire smoke, heterogeneity of the surface, large pixel size and view angle of satellites, 

and weak energy release from fire pixels (Giglio et al., 2003; Prins and Menzel, 1992; Roberts et 

al., 2005; Zhang et al., 2011). Thus, missing FRP observations cause a great amount of gaps in the 

spatial and temporal distributions. As a result, FRE in a given time period and region is not able to 

be directly integrated from satellite-observed FRP. To overcome these limitations, the diurnal 

patterns of FRP need to be reconstructed, which will be done by using a climatological value of 

FRP between t1 and t2 as exemplified in fig.1. Since, we will be giving products only over forests 

therefore, different forest density classes and forest types will be considered for making efforts in 

simulating diurnal FRP climatology. 
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Fig.1. Climatological diurnal FRP (average data from 2002 to 2005) for various ecosystems in 
North America (Zhang et al., 2012) 

 

To do this, we will adopt the approach that was originally developed to reconstruct diurnal pattern 

of fire size (Zhang and Kondragunta, 2008; Zhang et al., 2011). The climatological FRP will be 

calculated for forest types and their density classes, separately. These FRP data in a half-hourly 

interval will be smoothed using statistical fittings. The offset of shift is determined from the data 

pairs of the detected FRP for the given fire pixel and the corresponding values in the climatological 

curve using a least square method. Because fires in a pixel may not last for a very long time and 

instantaneous fires are not continuously detected due to the impacts from cloud cover, smoke, low 

severity fires releasing limited fire energy, and other factors (Zhang et al., 2011), the fire duration 

will be determined by assuming that fire could be extended 2 hours prior and post instantaneous 

fire detections if the number of the fire detections within a day is more than three times for the 

same pixel. Otherwise, fire occurrences are based on actual satellite detections. Finally, total FRE 

will be computed which is the time integral of fire radiative power (FRP) and FRE has correlation 

between PM 2.5 concentrations and other emissions.   

…………………………..(3) 

where ts is the start time of a fire event and te is the end time of the fire pixel. 

For a given material one may assert that the total FRE of a fire is directly related to mass consumed 

by that material’s heat of combustion, which can then be related to PM 2.5 and other emissions 

(Kaufman et al., 1998; Wooster et al., 2003; Roberts et al., 2005).    
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Because the temporal resolution of INSAT-3D/3DR will range from 15 (together) to 30 min 

(alone), we will set a minimum time step as 30 min. This means that we will calculate FRE by 

assuming that a fire can last for at least a half hour if there is one FRP observation. The half-hourly 

FRE is binned to calculate hourly biomass burning emissions.  

In near-real-time monitoring of biomass burning emissions, we will use INSAT-3D/3DR fire 

products from MMDRPS. The diurnal pattern of FRP will then be simulated for the previous day 

(0300 UTC – 0230 UTC for INSAT-3D & 0315UTC to 0245UTC for INSAT-3DR) for estimating 

fire emissions. As a result, the BBEP will be produced with a latency of 1 day. Daily and monthly 

emissions can be given as the sum of hourly values for a given region and an ecosystem type, 

separately.  

2.3.2 Domain of operation 

The domain of application will be kept to 10° - 45°N, 45° - 105°E (covering SAARC countries, 

presently operational Asia_Mer Sector) and only to forest regions.  

2.3.3 Global scenario 

FRP approach is adapted by WF_ABBA in the Cooperative Institute for Meteorological Satellite 

Studies (CIMSS), University of Wisconsin [Prins et al., 1998; Weaver et al., 2004]. Particularly, 

the WF_ABBA V65 detects instantaneous fires in subpixels using infrared bands around 3.9 and 

10.7 mm from a network of geostationary satellite instruments that include SEVIRI on board the 

Meteosat-9, and Imagers on board both GOES and MTSAT. It then derives instantaneous FRP 

from radiances in single MIR [Wooster et al., 2003]. Further, to minimize false fire detections, the 

WF_ABBA uses a temporal filter to exclude the fire pixels that are only detected once within the 

past 12 h [Schmidt and Prins, 2003]. The WF_ABBA V65 has been installed in NOAA OSDPD 

(the Office of Satellite Data Processing and Distribution) to operationally produce FRP from 

geostationary satellites since late 2009 (http://satepsanone.nesdis.noaa.gov/pub/FIRE/forPo/). The 

NOAA fire product provides detailed information of WF_ABBA V65 fire detections.  

2.4. Assumptions and Limitations 

Several assumptions have been made concerning performance estimates. Meteorological satellite 

instruments are not inherently designed to be able to detect and characterize small sub-pixel hot 

spots. Therefore, performance of the algorithm will be sensitive to instrument noise and other 

anomalies.  First of all, the output from the equations is no better than the input Imager data.  The 

technique assumes well calibrated Channels that meet current specifications for NedT, co-

registration, diffraction, earth location, saturation, etc.  It also assumes that sub-pixel detector 

saturations are flagged and available for application in near real time.  If this information is not 

available, sub-pixel characterization is suspect for both saturated and non-saturated fire pixels. The 

algorithm assumes that observed radiances are determined by the fire and non-fire portion of the 

pixel and are only affected by and adjusted for surface emissivity, water vapor attenuation, semi-

transparent clouds/smoke, diffraction, and solar reflectivity (3.9 µm band – Channel 3 – only).  



                     INSAT-3D Incremental ATBD (MMDRPS), November 2018                   31 

 

Each of the above “attenuation” (except clouds/smoke) properties are assumed the same for the 

fire pixel and background conditions. 

2.5. Validation 

High uncertainty exists in global biomass emissions and accurate validation is currently not 

possible because of the lack of reliable in situ measurement. Therefore, BBEP will be compared 

with other data sources. We will validate our product with the Global Fire Emissions Database 

(GFED), Quick Fire Emission Data (QFED), SEVIRI, Himawari & FY-4A and MODIS products. 

Validation using in-situ measurement using portable instruments will also be attempted. 
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3. Land Surface Albedo 
 

S. No. Product Name Spatial Resolution Temporal Resolution 

 

1 
IMG_LSA 4 km x 4 km 

Daily/ 

15-day composite 

  



                     INSAT-3D Incremental ATBD (MMDRPS), November 2018                   35 

 

3.1. Algorithm Configuration Information  

3.1.1 Algorithm Name  

Land surface albedo 

3.1.2. Algorithm Identifier  

 IMG_LSA 

3.1.3. Algorithm Specification 

Version Date Prepared by Description 

1.0  22.02.2018  Mehul R Pandya ATBD of  broadband  land  surface 

albedo  from  the  Imager  data  of  

INSAT-3D and INSAT-3DR 

3.2. Introduction 

Land surface albedo, defined as the fraction of incident solar radiation (0.3–4.0 um) reflected by 

land surfaces (Dickinson, 1995; Liang, 2004) is one of the most important parameters in general  

circulation  models,  hydrology  models,  numerical  weather  models,  and  surface radiation-

budget studies. Land surface albedo (LSA) is a key geophysical parameter controlling the energy 

budget in land–atmosphere interactions (Dickinson, 1983). LSA varies spatially and evolves 

seasonally based on solar illumination conditions, rainfall, soil moisture, vegetation growth, snow 

accumulation/melting and anthropogenic activities. Satellite remote sensing can provide a vantage 

point for estimating land surface albedo at various spectral,  spatial,  temporal,  and  angular  

resolutions.  During the last  few  decades, many satellite-generated albedo products have been 

derived with varying spatial resolution of 500 m to 20 km. Many researchers across the globe have 

developed algorithms for various sensors to derive albedo directly from satellite observations. The 

AVHRR algorithm provides global  coverage  of  albedo  products  (Strugnell  &  Lucht,  2001).  

POLDER  and  MISR  allow researchers  to  use  multi-angular  information  to  obtain  a  better  

understanding  of  surface reflectance  anisotropy  (Diner  et  al.,  1999;  Leroy  et  al.,  1997).  The  

Moderate  Resolution  Imaging  Spectroradiometer  (MODIS)  albedo  product  (Schaaf  et  al.,  

2002)  utilizes  multiple spectral bands to derive accurate broadband albedo estimations at both 

high spatial and high temporal  resolutions.  Clouds  and  the  Earth’s  Radiant  Energy  System  

(CERES)  uses  broad shortwave band to derive the planetary albedo (Rutan et al., 2006). With the 

development  and availability of geostationary satellite sensors, many researchers have focused on 

deriving the  diurnal  changes  of  surface  albedo  based  on  a  much  wider  range  of  solar  

illumination angles, such as the Meteosat/SEVIRI albedo product (Geiger et al., 2008; Pinty et al., 

2000). 
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3.3. Theoretical background  

The conventional methods for estimating broadband albedos rely on a series of steps in the 

processing chain, including atmospheric correction, surface angular modelling, and narrowband-

to-broadband albedo  conversions. Unfortunately, errors associated with each procedure  may  be  

accumulated  and  significantly  impact  the  accuracy  of  the  final  albedo products (Liang, 2003). 

Uncertainties associated with each procedure may be accumulate and may have bearing on final 

output. 

An alternative scheme developed in the earlier studies (Liang et al., 1999, 2003)  linked  TOA (top-

of-atmosphere) narrowband albedos with three land surface broadband albedos using a 

feedforward  neural  network  without  performing  any  atmospheric  corrections.  This  idea stems 

from earlier study (Pinker et al., 1985) that linearly related TOA and surface broadband albedos.  

Surface  broadband  albedo  depends  on  surface  spectral  reflectance  as  well  as atmospheric 

conditions. TOA observations contain information on both surface reflectance and atmospheric 

optical properties, which implies that it is possible for us to compute the broadband  albedos  using  

TOA  narrowband  albedos  without  performing  any  atmospheric corrections. 

Liang  et  al.  (1999)  used  the  MODTRAN  model  to  simulate  TOA  reflectances  under  the 

Lambertian assumption, and they obtained a relationship between MODIS TOA reflectances and  

broadband  albedos  by  using  a  neural  network  method.  Liang  et  al.  (2003)  used  the projection  

pursuit  regression  method.  However,  these  two  studies  did  not  consider  the anisotropy of 

the land surface. Liang et al. (2005) further improved it for estimating daily land surface albedo of 

the Greenland ice sheet from MODIS data. They used the discrete ordinates radiative  transfer  

program  for  a  multilayered  plane  parallel  medium  to  simulate  TOA reflectances  of  snow/ice  

and  then  developed  the  relationship  between  bidirectional  TOA reflectances  and  broadband  

albedos  using  an  empirical  training  method;  they divided  the solar/view geometry space into 

angular bins and calculated the regression coefficients of each angular bin using a linear regression 

method. Qu et al. (2015) have provided detailed review of algorithms for albedo. 

Here,  we  propose  to  develop  a  direct-estimation  algorithm  by  employing  an  atmospheric 

radiative transfer code to simulate the TOA directional reflectances in the two spectral bands of 

INSAT-3D Imager located in visible (0.55-0.75 um) and shortwave infrared-  SWIR (1.55-1.70 

um) wavelengths and also calculate the broadband reflectance in the shortwave band (0.4-2.5  um),  

and  then  establishing  a  relationship  between  the  TOA  reflectances  and  the broadband 

reflectance using the regression method, which would yield narrow to broadband conversion 

coefficients. 

An  approach  for  estimating  land  surface  broadband  albedo  from  multispectral  remote sensing  

observations  is  a  hybrid  approach  that  combines  extensive  radiative  transfer simulations 

(physical) with regression methods (statistical). It directly links the TOA radiance or reflectance 

to surface broadband albedo without performing different processes as per the first  approach.  Here  

narrowband-to-broadband  spectral  conversion  by  considering  the spectral response function of 
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the sensor in various spectral bands of the instrument is the main  step  required  to  derive  the  

albedo.  Figure  1  shows  the  spectral  signatures  of  major surfaces with the relative spectral 

response (RSR) of INSAT-3D Imager instrument. A weighting factors  (Narrow  to  broad  band  

conversion  coefficients)  are  to  be  determined  with  the radiative  transfer  simulations.  This  

approach  has  been  successfully  used  to  estimate broadband albedo from MODIS data (Liang 

et al., 2003). 

 

 

Figure 1. A typical spectral distribution of the reflectances for vegetation, soil, snow over shortwave solar 

spectrum range shown with the RSR of two spectral bands: visible (solid line) and SWIR (dashed line) of 

INSAT-3D Imager instrument. 

 

3.4. Methodology 

In the present study, the bidirectional reflectance distribution function (BRDF) is not taken into 

consideration and the surface is assumed to reflect isotropically (i.e. equally at all angles), so this 

albedo is referred to as the "diffuse albedo" or the "hemispherical albedo". When the land surface 

is assumed as lambertian (the reflectance is isotropic from different solar/view angles), the value 

of Bidirectional Reflectance Factor (BRF) is then equal to the albedo and the  surface  broadband  

albedo  can  be  estimated  from  linear  combinations  of  narrowband albedo (spectral directional 

reflectance) with different weight coefficients. This method was first proposed by Brest and 

Goward (1987) and was then applied to different sensors: AVHRR (Saunders, 1990; Russell et al, 

1997), Landsat TM (Duguay & Ledrew, 1992; Knap et al, 1999), Meteosat (Valiente et al., 1995) 

and Visible Infrared Imaging Radiometer Suite (VIIRS) (Liang, 2003). Liang (2001) reviewed the 

above studies and provided simple conversion coefficients for  estimating  broadband  surface  
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albedo  from  a  variety  of  sensors  under  different atmospheric and surface conditions. The 

validation results show that the conversion formulae are very accurate with an average residual 

standard error around 0.02 (Liang et al., 2003).  

 

Figure 2. Algorithm flowchart for direct-retrieval of the broadband albedo from the INSAT-3D Imager 

data by generating narrow to broadband conversion coefficients 

For the retrieval of broadband albedo in the present study, the basic procedure consists of three 

major steps as illustrated in figure 2. The first step is to conduct extensive radiative transfer 

simulations using the 6SV code, the second step is to obtain the narrow to broad band conversion 

coefficients by linking the simulated TOA reflectance with surface broadband reflectance using 

linear regression analysis and third step is to apply the narrow to broadband conversion coefficients 

on the INSAT-3D Imager data to obtain the broadband albedo. Various surface  reflectance  spectra  

of  different  cover  types  with  different  atmosphe ric  conditions have  been  incorporated  into  

the  radiative  transfer  simulations.  In  this  study,  attempt  has been made to estimate land surface 

broadband albedos using TOA directional reflectance, instead of TOA spectral albedos. This 

improvement has in fact greatly simplified this method, since calculating TOA spectral albedo 

requires TOA angular modelling that might introduce large errors.    

3.4.1.  Radiative transfer simulations 

For  a  given  atmospheric  and  surface  condition,  we  need  to  compute  the  directional 

reflectance at the top of the atmosphere. Assuming the surface is Lambertian, the upw elling 
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radiance at the TOA can be computed by radiative transfer simulations through  6SV (Second 

Simulation of a Satellite Signal in the Solar Spectrum  –  Vector version)  code  (Vermote et al., 

1997). It is critical to use the representative surface reflectance spectra in data simulations. 

Different  surface  reflectance  spectra  covering the  spectral  range  0.4–2.5  um  representing 

vegetation, sand, water, snow surfaces were interpolated in the study. The simulation outputs 

include total shortwave albedo and spectral albedos that are calculated by incorporating the sensor 

spectral response functions. 

In  the  6SV  simulations, varying aerosol optical  thickness  values  corresponding to  lower  to 

higher aerosol loadings, continental aerosol model, and tropical atmospheric profile that also 

represent different water vapor and other gaseous amounts and profiles. The aerosol  model used 

are the defaults in 6SV and atmospheric profiles over Indian region were used in the simulations. 

For the operational application of this method, more should perhaps be included to represent the 

variable atmospheric conditions. The upwelling TOA radiance (L) is further normalized to 

apparent spectral reflectance (a) using the expression, 

 

Where,  d  is  the  Sun-Earth  distance  in  Astronomical  Units,  E0  is  exo-atmospheric  solar 

irradiance and  s is the sun  zenith angle. Land surface broadband albedo is defined as the ratio 

of the surface upwelling flux (Fu) to the downward flux (Fd) (Liang, 2003), 

 

where  is denoted to the waveband from wavelength 1 to wavelength 2 If 

 albedo is the total shortwave broadband albedo. The wave range    (0.4, 

0. and    (0.7,  4um)  correspond  to  visible  and  near-infrared  (near-IR)  albedos, 

respectively.   is the surface spectral reflectance spectra. One of the major limitations in this 

simulation study is its assumption of Lambertian surfaces. The major reason is that we do not have 

a good understanding of the directional reflectance properties of various  surface types at the 

INSAT-3D Imager resolution. 
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3.4.2.  Generation of narrow to broadband albedo conversion coefficients 

Once the database is created from the simulations described above, the next step is to link TOA 

reflectance to land surface broadband albedos. This exercise is to be carried out for each of the 

major land cover types. We used regression analysis to establish the linear relationship (equation 

4) between TOA reflectance in two bands of INSAT-3D Imager and LSA and to obtain the arrow 

to broadband (NtoB) conversion coefficients C0, C1, and C2. 

 

Where  is the broadband LSA, while  3D-VIS  and  3D-SWIR  are the TOA reflectances in 

visible and  SWIR  bands  of  INSAT-3D  Imager  sensor  respectively.  A  set  of  NtoB  coefficients  

are computed for four major land covers namely, soil, vegetation, water and snow. The physical 

meaning of the conversion factors C1  and C2  is obvious from equation (4). They quantify the ratio 

of the reflected radiances within the narrow bands to the reflected radiances for the visible and 

SWIR broad bands, or the degree of the representativeness of the narrowband reflectance for  the  

broadband  reflectance.  The conversion  coefficients  developed  from extensive radiative transfer 

simulations are then would be applied to the INSAT-3D Imager TOA reflectance data. 

3.4.3.  Calibration of the TOA observations of INSAT-3D Imager sensor 

It  has  been  observed  that  the  satellite-level  signal  in  two  spectral  bands  of  the  INSAT-3D 

Imager instrument significantly underestimate the top-of-atmosphere (TOA) radiance values. This  

factor  severely  modulates  the  LSA  computations.  An  exercise  was  carried  out  to compensate  

this  factor  of  underestimation  from  a  systematic  comparison  between  TOA radiances of 

INSAT-3D Imager and INSAT-3A CCD and MODIS  sensors.  After introducing the radiance 

calibration coefficients equation (4) can be rewritten as, 

 

Where  1  and  2  are  radiance  calibration  coefficients  of  INSAT-3D  Imager  instrument.  

Assuming the multiplication of two coefficients 1 and C1  as new coefficient  1,  2 and C2 as 

2 and C0 as 0, equation (5) can be rewritten as, 

 

3.4.4.  Data used and generation of LSA 

Raw digital number data of visible and SWIR bands of INSAT-3D Imager sensor corresponding 

to 10:30 hrs of 1st of each month of year 2015 was downloaded from the MOSDAC server. The 

digital number data were converted to the TOA radiances, which was subsequently converted to 
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the TOA reflectances using equation (1). A cloud mask was devised from two sources, (a) 

thresholds of INSAT-3D Imager data and (b) MODIS cloud mask. A cloud-free TOA reflectance  

data was then converted to the LSA using the N to B coefficients generated from the simulation 

exercise as discussed in previous section. A land over product available from the MODIS sensor 

was used as a reference for applying land cover-based N to B coefficients. 

3.5. Results 

Monthly broadband LSA maps were derived from the INSAT-3D Imager data representing 1st day 

of each month of the year 2015 using the method discussed in the above section.  The broadband 

LSA was derived at a spatial resolution of 4 km over India and surrounding region. The broadband 

LSA maps for different months are shown in the figure 3.  Visually the spatial patterns and 

magnitudes of broadband albedo look very reasonable.  Majority of the broadband albedo values 

are in the range of 0.1 to 0.3 representing vegetation and soil pixels. However, desert regions show 

LSA value greater than 0.3 and ranged between 0.3 to 0.5. While snow covered regions show LSA 

value greater than 0.4 or 0.5. An error due to clouds still persists even though the cloud mask was 

applied on the images. Fringe of clouds are seen with very high albedo values, which causes an 

erroneous albedo value. A better mechanism for removing clouds has to be developed in future. 

The  assumption  of  a  Lambertian  surface  is  being  debated  (Liang  et  al.,  2003).  The  key 

argument is  that the broadband albedo depends on  both spectral and angular properties of the land 

surface. From the validation analysis of the study  by Liang et al. (2003), it appeared that an 

assumption of spectral information  dominance over the angular information does not lead to 

significant  errors, which is an important achievement of this study.  Overall it can  be said that 

broadband LSA could be successfully computed over India from the INSAT-3D Imager 

observations. 

This is a preliminary study carried out for computing the broadband land surface albedo from the 

INSAT-3D Imager sensor, however detailed study is underway to establish the proposed method  

with  more  simulations  involving  additional  land  cover  types.  There  is  also  a requirement to 

enhance the cloud removal technique, which will minimize the noise observed in  the  albedo  

retrieval.  Moreover,  issue  related  to  the  calibration  of  INSAT -3D  Imager radiance has to be 

rectified for robust retrieval of the broadband albedo. 
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Figure 3. Broadband albedo derived from INSAT-3D Imager data from the proposed method. 

3.6.  Summary and Future scope 

In  this  document,  we  have  presented  the  algorithm  theoretical basis  (Version  1.0)  for the 

broadband  land  surface  albedo  from  INSAT-3D  Imager  dataset.  The  technique  involves 

development of a direct-estimation of broadband land surface albedo from the observations of the 

INSAT-3D Imager sensor, which is available from the geostationary platform. Extensive 

theoretical modelling study was carried out,  where an atmospheric radiative transfer model was 

used to simulate the TOA signals in two broad bands of Imager sensor  for diverse land atmospheric 

scenario. After the simulation exercise was over, a relationship between TOA reflectances and 

land-surface broadband albedos was developed from the simulation results, which  provided  a  set  

of  conversion  coefficients.  A  separate  set  of  narrow  to  broadband conversion coefficients for 

each of the major land covers was generated for INSAT-3D Imager data. Using the proposed 

method broadband land surface albedo maps were generated over India  from  the  TOA  

observations  of  INSAT-3D  Imager  sensor.  Validation  of  the  retrieved albedo will be carried 

out by comparing it with MODIS albedo products and  in-situ  albedo measurements. The 
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preliminary study has provided encouraging results; however, a detailed analysis is underway 

involving more theoretical simulations and removing the errors due to erroneous cloud mask. 

Moreover, serious issues  related to  (1)  the calibration of INSAT-3D Imager radiance  and (2) 

cloud cover have  to be  resolved for robust retrieval of the broadband albedo on routine basis. 
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4. Actual Evapotranspiration (AET) from INSAT 3D series 
 

S. No. Product Name Spatial Resolution Temporal 

Resolution 

1 IMG_AET 4 km x 4 km Daily 
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4.1. Algorithm Configuration Information 

4.1.1. Algorithm name 

Actual Evapotranspiration (AET) from INSAT 3D series (EVAPOTRANSPIRATION) 

4.1.2. Algorithm identifier 

ISRO_INSAT_ DLY_ET 

4.1.3 Algorithm specification 

Version Date Prepared by Description 

1.0 19 September 2018  Bimal K. Bhattacharya Evapotranspiration baseline 

document 

 

4.2. Introduction 

Evapotranspiration (ET) is one of the key variables in hydrological cycle, agricultural drought and 

crop yield deviation. It is a term used to describe the combined loss of water due to the evaporation 

largely from soil surface and transpiration from plants.  ET is a central process in the climate 

system and a nexus of water, energy & carbon cycle (Jung et.al. 2010). Land evapotranspiration 

(ET) is an essential component in global water, energy and carbon cycles, and provides a link 

between the atmosphere and the Earth’s surface (Betts et al., 1996; Jiménez et al., 2011; Tang et 

al., 2014; Zhang et al., 2012, 2015). It is also an important indicator of hydrologic and heat 

variations under a changing climate and anthropogenic interference (Brutsaert and Parlange, 1998; 

Ohmura and Wild, 2002; Wang and Dickinson, 2012). Accurate quantification of ET is thus critical 

for understanding the hydro-climatologic processes and the interactions of the Earth system 

(Rodell and Famiglietti, 2002). However, the estimation of large-scale ET from ground-based 

measurements alone remains challenging due to the sparse network of point observations and the 

high spatial heterogeneity and temporal variability of ET (Xu and Singh, 2005; Xue et al., 2013). 

To address this limitation, a number of global ET products have been derived in recent years, 

including remote sensing-based products (Su, 2002; Muet al., 2007, 2011; Zhang et al., 2009, 2010; 

Miralles et al., 2011b; Yang et al., 2013).         There are many methods mentioned in the literature 

such as SEBAL (Bastiaanssen 2013), TSEB (Norman & Becker, 1995) and SEBS (Su, 2002). Most 

of the model uses the operationally available polar/ near-polar orbit satellite datasets such as 

MODIS, ASTER, LANDSAT have long been utilized for the estimation of ET from field to 

regional scale. However, the output records suffer from spatial and temporal gaps due to cloud 

cover and in-frequent image availability based on satellite overpass schedule. However, 

geostationary satellites, have high temporal resolution continuously measuring several factors 

related to land surface and the atmosphere over large regional scales. Thus, they have high potential 

in calculating land surface and water cycle at hourly temporal resolution.  This shows the vital role 

of geostationary satellite in modelling Evapotranspiration on spatial scale. Operational ET 



                     INSAT-3D Incremental ATBD (MMDRPS), November 2018                   47 

 

products are available over US and Europe using thermal remote sensing data from geostationary 

meteorological satellite data such as GOES (Anderson et al, 2007) and MSG-SEVIRI (Hu et al, 

2015). 

4.2.1. Overview and background 

Most of the methods used for modelling evapotranspiration uses energy surface balance framework 

using thermal infrared remote sensing.  This describes the heat and water transfer from land surface 

to overlying atmosphere within surface layer of Atmospheric Boundary Layer (ABL) : 

Rn- G = H + λE                (1) 

Where, Rn is the net surface radiation, G is the soil heat flux, H is the sensible heat flux and λE is 

the latent heat flux. Remote sensing technique can provide spatial and temporal information of 

Normalized Difference Vegetation  Index (NDVI), Leaf Area Index (LAI), surface  albedo, surface 

emissivity, and radiometric surface temperature, most of which are indispensable to the models 

and methods that partition the available  energy (Li et. al. 2009 , Mauser et.al. 1998).  A large 

number of efforts  have been made to incorporate remotely sensed  surface temperature in 

combination  with other critical variables,  e.g., NDVI and albedo into ET modeling  during the 

past three decades (kala et.al. 2008). It was Penman (Penman 1948) who laid the foundation for 

relating evapotranspiration to meteorological variables (Allen et.al. 1998). Model simulations or 

empirical equations requiring meteorological data are the traditional way of estimating 

evapotranspiration such as gradient method, Bowen ratio method, eddy covariance method, 

lysimeter method.  Malamos et.al. (2015) used PM method to estimate ET on the field scale level 

while Uddin et.al. (2013) used the Bowen ratio method & EC method to estimate latent heat fluxes.   

However, because of some practical reasons like diversity in land covers or temporal changes in 

the landscape, these methods may not represent the evapotranspiration at regional-scale effectively 

(Zhang et.al. 1995) The most frequently used method  for estimating evapotranspiration at present 

is the Penman-Monteith equation.   The energy balance concept and net radiation are used as the 

principal parameters in most of the remote sensing methods for estimating evapotranspiration (Li 

et.al. 2002). Till date, several energy balance algorithms are available for calculating ET through 

remote sensing. such as SEBAL (Bastiaanssen et.al.1998) and SEBS (Su,2002). They are single 

source model which consider soil and plant as single source. In addition to these, there are dual-

source or two-source (soil and vegetation canopy) models, e.g. TSEB (Norman & Becker 1995), 

SEBI (Menenti & Choudhury 1993) and ALEXI (Anderson, Norman, Diak, kustas & Mecikalski, 

1997). Therefore, considering the characteristics and significance of the various ET methods 

developed over the past decades, precise estimation of ET over regional scale based on the remote 

sensing technology has become a critical question in ET related studies. 
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4.2.2. Objectives 

The objectives of this document are: 

(i) To outline the algorithm for the estimation of day-time and daily Evapotranspiration 

(ET) over land in all-sky conditions 

(ii) To implement the algorithm in IMDPS GPR (Geophysical Parameter Retrieval) chain 

for automation of ET product generation 

(iii) To describe validation strategy against available in-situ measurements and other 

available satellite-based and reanalysis products. 

4.2.3.    Instrument and characteristics of input products 

4.2.3.1. Indian geostationary satellite INSAT 3DR  

The Indian National Satellite (INSAT) system is a joint venture of the Department of Space (DOS), 

Department of Telecommunications (DOT), and India Meteorological Department (IMD). INSAT-

3DR carries a multi-spectral Imager (optical radiometer) capable of generating the images of the 

earth in six wavelength bands significant for meteorological observations, namely, visible (0.55-

0.75 µm), shortwave infrared (1.55-1.68 µm), middle infrared (3.8-4.1 µm), water vapor (6.5-7.1 

µm) and two bands in thermal infrared (10.3-11.3 µm & 11.5-12.5 µm) regions. It also has 19 

channel sounder, which is the first such payload to be flown on an ISRO satellite mission. The 

spatial resolution is 1 km x 1 km for VIS/SWIR band and 4 km x 4 km for thermal IR and 8 km X 

8 km bands. The introduction of INSAT Meteorological Data Processing System (IMDPS) (2014) 

provides both ‘full-globe’ and ‘sector’ data products in all the six bands of imager at half-an-hour 

interval at 4 km spatial resolution in an automated mode. So, there are maximum 48 acquisitions 

on a given day. Raw data after reception at each acquisition were corrected for servo, line loss, 

radiometry, stagger and oversampling removal using the INSAT 3D/3DR data products scheduler. 

This results into automated generation of co-registered data in each band at Transverse Mercator 

(TM) projection.  The dimension of each band at each acquisition is 1617 rows x 1615 columns 

for Asia Mercator sector product.  

4.2.3.2. Required inputs 

Operational all-sky hourly Net radiation product, sliding monthly noon-time composite of land 

surface albedo, instantaneous LST from INSAT 3DR 

The proposed algorithm for ET will use the INSAT Net radiation hourly product in the MMDRPS 

operational chain. The net radiation will be computed from daily insolation product at 4 km from 

INSAT 3D/3DR, proposed operational albedo product from INSAT 3D/3DR, hourly forecast air 

temperature and relative humidity from WRF model, land surface temperature (LST) from INSAT 

3D/3DR, using the surface emissivity obtained from 10 year historical MODIS database or real-

time composite NDVI at 1-4 km from other sources (https://www.eumetsat.int/website/home/ 

Satellites/CurrentSatellites/Meteosat) for SEVIRI NDVI product for Indian ocean coverage, 
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National Data Centre, NRSC, Hyderabad for OCM-2 & AWiFS NDVI). The net radiation needs to 

be made operationally available under clear and cloudy sky conditions to generate latent heat flux 

and Evapotranspiration (ET).  

4.2.3.3. Hourly short-range forecast from WRF  

Weather Research and Forecasting (WRF; Skamarock et al., 2008) Model version 3.1 is used for 

All India Short range weather forecast. WRF is a limited area, non-hydrostatic, primitive equation 

model with multiple options for various physical parameterization schemes. The WRF Model is 

integrated in a triple domain configuration with a horizontal resolution of 45 km, 15 km and 5 km 

for the All India, with grid points 260×235, 352×373 and 676×721 in x and y directions for the 

domains 1, 2 and 3, respectively. The model has 36 vertical levels with the top of the model 

atmosphere located at 10 hPa. The WRF 3D-Var is used for the assimilation of all available 

conventional including ISRO-AWS data and satellite observations to improve the model initial 

conditions. The operational WRF short-range forecasts (Kumar et al., 2011), available at 

MOSDAC site used climatological land surface and atmospheric parameters from global database 

and assimilated all available conventional including ISRO-AWS. The operational forecast is 

available at finer spatial resolution (~ 5km) at hourly intervals up to 72 hours. Similarly, IMD is 

also running a WRF model in a double domain configuration with a horizontal resolution of 9 km 

and 3 km for the RSMC Domain and All India domain respectively. The model has 46 vertical 

levels with the top of the model atmosphere located at 50 hPa. In this algorithm only temperature 

and relative humidity at 2-meter height from surface will be used for estimation of ET. For testing 

the prototype algorithm, SAC WRF forecasts at 5km resolution will be used. However, for 

operational implementation in MMDRPS, IMD WRF forecasts will be used.  

4.3. Inputs 

4.3.1. Static data     

Soil textural map and soil moisture constants (Field capacity, Permanent Wilting point, Air-dry 

water content) are required to be used. 

4.3.2. Image and pre-processing data (Dynamic) 

Table 1 

Parameter Resolution Accurac

y 

Source 

Instantaneous Proposed Net Radiation (Rn) 

of Asia Mercator sector  

Pixel (4 km x 4 km) 90% MOSDAC/

MMDRPS 

Instantaneous cloud mask Pixel (4 km x 4 km) 95% MOSDAC/

MMDRPS 
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Instantaneous land surface temperature 

(LST) product of Asia Mercator sector 

Pixel (4 km x 4 km) 98-99% MOSDAC/

MMDRPS 

Proposed noon-time sliding monthly 

composite of land surface albedo of Asia 

Mercator sector 

Pixel (4 km x 4 km) 98-99% MOSDAC/

MMDRPS 

 

4.3.3. Other auxiliary data and model inputs  

Daily land emissivity will be generated from ten-year historical data of MODIS as mentioned in 

table 2. Real-time availability of monthly sliding composite of NDVI data from other concurrent 

sources resampled at 4km. Hourly forecast of air temperature at 2m height and relative humidity 

using high –resolution NWP model (e.g. WRF) as mentioned in Table 3. 

Table 2. Required ancillary data 

Parameters Source 

Daily emissivity from 10-year historical data 

from MODIS (2008-2018) 

http://modis-atmod.gsfc.nasa.gov 

MSG SEVIRI , OCM -2, MODIS  NDVI, 

AWiFS NDVI 

https://www.eumetsat.int/website/home/Satellites/

CurrentSatellites/Meteosat, 

https://www.eumetsat.int/website/home/Data/Pro

ducts/Land/index.html 

NDC, NRSC, Hyderabad for OCM-2 & AWiFS 

NDVI 

Soil texture & soil porosity over different 

LULC 

NBSS &LUP, Nagpur digital soil map at 1:250000 

scale (to be procured) 

Operational hourly forecast output from 

WRF at ~ 0.03° / 0.05° spatial resolution for 

the following parameters in ASCII format 

(latitude, longitude, parameter) 

1. Air temperature (K) at 2 m height 

2. Humidity (%) at 2m height 

 

The short-range forecasts will be updated 

every-day at 2pm. 

IMD for operationalization / MOSDAC for 

experimental testing 

 

 

 

http://modis-atmod.gsfc.nasa.gov/
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4.4.  Algorithm functional specifications 

4.4.1. Clear sky Latent heat flux (λE clr) 

The Latent heat flux is computed using the equation (2) given by PM equation (Monteith, 1965) 

λEclr = 
�ɸ� � ������

��ϒ (�� 
�� 
��

)
 ……(2) 

Here, ɸ is net available energy (Rn- G) , λEclr is  clear sky latent heat flux or evapotranspiration ( 

Wm-2) , s is slope of SVP vs. temperature curve, ρ is air density( kg m-3), γ  is psychometric 

constant(hPa K-1) , cp is specific heat of air (MJ kg-1 K-1), DA is vapor pressure deficit, gB is 

boundary layer conductance ( ms-1), gS is stomatal (or surface) conductance(ms-1) 

The method used here to compute latent heat flux combines satellite TS data (LST) obtained from 

INSAT 3DR with standard energy balance closure models in order to derive a hybrid closure that 

does not require the specification of surface to atmosphere conductance terms (Mallick et.al. 2014). 

This method is referred to as the Surface Temperature Initiated Closure (STIC). This method can 

be used by simultaneously solving four state equations as mentioned by (Mallick et.al. 2014) to 

estimate latent heat flux. The four internal state equations needs to be solved in iterative manner 

to compute LE are given below: 
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)
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)
           (6) 

Here Ʌ is the evaporative fraction, ∆T is expressed as Ts-Ta where Ta (oC) is the air temperature 

and Ts is land surface temperature (oC). e�  is effective vapour pressure (hPa), e� is atmospheric 

vapour pressure (hPa) at Ta height of measurement and ��
∗

 is saturation vapour pressure at Ts.  The 

block diagram to compute LE from iterative solution is shown below. In the flow chart (Figure 1), 

TSD is the surface dew point temperature (0C), M is moisture availability at surface (0-1) TD
 is dew 

point temperature (0C). 

The input needed for computation of λE mentioned in equation (2) are air temperature (Ta), LST 

(Ts), Relative humidity (RH), Net radiation (Rn) and soil heat flux (G), For clear sky conditions, 

hourly Net radiation (Rn) product will be used as input. Air temperature and relative humidity will 

be taken from WRF model at 2m height on hourly scale. LST obtained from INSAT 3DR will be 

used on-hourly scale as input to this model.  

In order to solve net surface available energy, ɸ  (=Rn –G) as mentioned in equation (2) and (6) 

we need to obtain soil heat flux. The soil heat flux can be obtained by two approaches: 
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Figure 1: Diagrammatic representation of the core equations used to recover the internal state 

variables in STIC (Mallick et.al. 2014) 

4.4.2. Soil heat flux model 

Statitsical approach    

The ratio of daytime soil heat flux and net radiation from AMS measurements over short vegetative 

systems were found to produce logarithmic relation with INSAT 3A CCD NDVI at 1 km. This 

relation was used to derive the soil heat flux (Bhattacharya et. al . 2014). 

 

Figure 2: Relationship of net radiation fraction of soil heat flux (G) with NDVI 
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It resulted into a significant correlation coefficient of 0.8. The spread is relatively more which 

could be due to difference in situ measurement footprints of soil heat flux and net radiation, and 

INSAT 3A CCD. This function was used to estimate soil heat flux through inversion from regional 

daytime net radiation and INSAT NDVI. 

This relation G = -12.5 ln(NDVI)-1.317 will be used to compute the G/Rn ratio. Using all-sky net 

radiation product from INSAT 3DR and sliding monthly NDVI composite from other sources, 

daytime G and net available energy can be computed. Since nighttime soil heat flux is very 

negligible, daytime   G will be scaled to daily 24 hours average G to derive daily ɸ.  

 

Thermal inertia-based (TI) physical modelling approach 

The physical model for the land surface soil heat flux estimate based on the harmonic 

analysis of soil surface temperature (HM model) is described by Murray and Verhoef et.al. (2007) 

as follows: 

                   G = Γ *( ( 1 - 
�

�
 �� )* (∑ ��√�ώ �

�  sin(nώt + ɸn + 
�

�
−  

�Δ�

��
 )) = Γ * Js      (7) 

where G (W m−2) is the at-surface soil heat flux, Γ (J m−2 K−1 s−0.5) is the soil thermal inertia, M is 

the total number of harmonics used  An is the amplitude of the n’th soil surface temperature (Ts) 

harmonic, ω (rad s−1) is the angular frequency, t is the time (s), ϕn (rad) is the phase shift of the 

n’th soil surface temperature harmonic, and Js is the summation of harmonic terms of soil surface 

temperature.   

The parameter soil thermal inertia, Γ, is a key variable for estimating G0 using Eq. (10). 

Murray and Verhoef adopted the concept of normalized thermal conductivity (O. Johansen 1977)  

and developed a physical method to calculate Γ as 

τ = exp [ϒ (1- Sr
ϒ-δ)] (τ* - τ0) + τ0                                                       (8) 

where Γ and Γ0 are the thermal inertia for saturated and air-dry soil (J m−2 K−1 s−0.5) respectively. 

Also    τ0 = -1062.4 Ө* + 1010.8 & τ* = 788.2 (Ө*
-1.29).   θ (cm3 cm−3) as soil porosity (equal to 

the saturated soil moisture content); γ (−) is a parameter depending on soil texture obtained from 

soil map ; Sr is the mositue availability at surface obtained moisture availability subroutine from 

STIC model. For instantaneous observations using satellite data n =1 and phase ɸ can be taken as 

00.     

                                  Js (t) = ( 1 - 
�

�
 �� )* (��√�ώ ��� ��ώ� +  ɸ� +  

�

�
−  

���

��
 �       (9) 

Δt (s) is time offset between the canopy composite temperature and the below-canopy soil surface 

temperature and is found as 1.5 h in Murray and Verhoef based on their data. With the two boundary 

values (i.e., Δt =1.5 h for fc=1 and Δt=0h for fc=0), a linear approach is proposed here to describe 

time offset Δt as function of vegetation fraction (fc). NDVI data from OCM, MSG-SEVRI or 

MODIS will be used to compute fc 
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                Δt= 1.5 · fc                                                                                  (10) 

Once the soil heat flux is obtained then ɸ  is solved if all clear-sky instances prevail throughout 

the day.  

7.4.3 Cloudy sky Latent heat flux (λE cld) 

The latent heat flux under cloudy sky conditions can be estimated using equation (2). Under cloudy 

sky conditions LST is not available, so the challenge is to retrieve LST under cloudy-sky condtions 

through inverse modelling. 

4.5.  LST retrieval under cloudy-sky 

From the proposed net radiation product, the all-sky net radiation data are pre-requisite for LST 

recovery under cloudy-sky conditions. The net surface longwave radiation will be obtained as a 

difference from net surface radiation and net surface shortwave radiation under cloudy sky 

conditions.  Net surface shortwave radiation will be obtained from instantaneous surface insolation 

product and noon-time sliding monthly albedo composite. The incoming longwave radiation will 

be deducted using WRF forecast data to retain outgoing longwave radiation (Rlocld). By inverting 

the equation of stefan-boltzmann law we can recover LST. 

LSTcloud
 = (Rlocld /(Ɛs σ))1/4   (11) 

Here under cloudy sky conditions the 30-day composite value of surface emissivity for cloudy 

pixel from  from historical MODIS data or sliding monthly NDVI composite will be used.   

If the LST is recovered then by using equation 2, we can obtain latent heat flux under cloudy 

conditions. (LEcld) 

In this case also, like clear sky conditions for solving ɸ  (Rn –G) as mentioned in equation (2) & 

(6) we need to obtain soil heat flux. If LST is recovered under cloudy sky conditions the soil heat 

flux can be obtained by using TI- based model as discussed above. Here, in case of cloudy 

conditions for vegetation fraction (fc) we will use sliding monthly NDVI composite value cloudy 

pixel from external sources. By using equations 7-10 soil heat flux (G) will be computed.  

Once ‘G’ is obtained using method mentioned in figure (3) cloudy sky Latent heat flux   (λE cld) 

4.5.1. Daily Evapotranspiration (ET) 

The hourly latent heat flux (W m-2) will be converted in hourly ET (mm) using expression : 

λE (mm depth of water per hour ) = (λE (Wm-2) * 0.0015)    (12) 

This hourly ET will be summed to obtained daily and day time evapotranspiration in mm depth of 

water loss per day.  

4.5.2. AET anomaly  

The Agro-Met Field Units (AMFUs) also require anomaly of AET products from mean for Friday-

Monday and Tuesday –Thursday of each week. Once the algorithm is tested, validated and 
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integrated into MMDRPS and declared operational, the algorithm will be for processing of past 

years INSAT 3D and ancillary data to generate long term daily, time-binned AET, mean and percent 

anomaly from mean. 

4.5.3. Steps for operational implementation 

The following steps need to be followed for operational implementation of evapotranspiration over 

land (AET) product generation: 

i) Three-hourly temperature data at 2-meter surface height from hourly forecast from WRF 

(ASCII format) at 0.03 o X 0.03 o  / 0.05 o X 0.05 o spatial grid. 

ii) Conversion of all ASCII outputs of (i) and (ii) to raster of dimension approx. 0.04o X 0.04o 

grid resolution as per the INSAT 3DR  net radiation product 

iii) The sub setting of LST, current-day noon-time albedo, sliding monthly albedo and NDVI 

composites, net radiation products as per the bounds of Asia sector products. 

iv) Integration of INSAT derived clear sky net radiation, LST with 2-D surface of WRF variables 

in to physical model to generate clear sky latent heat flux. (λEclr) 

v) Integration of INSAT derived cloud mask and cloudy-sky net radiation and recovered LST 

along with 2-D surface WRF variables into physical model to generate cloudy-sky latent heat 

flux (λEcld) 

vi) Computation of daily evapotranspiration in mm day-1 from hourly latent heat flux and time-

binned AET product for four days (Friday – Monday) and three days (Tuesday – Thursday).  

vii) Generation of long-term daily, time-binned, mean AET in mm depth of water to be updated 

every year), percent anomaly from mean 
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4.6.  Outputs     

 

Product latency of time-binned product for dissemination to agro-met advisory 
network  

Daily integrated AET will be obtained at the end of current day. For bi-weekly agro-advisories 
time-binned AET product of four-day (Friday-Monday) and three-day (Tuesday – Thursday)-d 

sum and percent anomaly from long-term mean corresponding to respective binning period will 
be disseminated on Tuesday and Friday morning before 11 AM. 

 

  

Parameter Unit Min Max Accuracy Resolution 

Daily ET product over land 

(i) ET 

(ii) Latitude 

(iii) Longitude 

 

 

mm day-1 

 

 

0.01 

7°N 

67°E 

 

12 

37°N 

98°E 

 

 

70-75% 

 

 

~ 4 km 

Time binning product of ET sum 

over four days (Friday – 

Monday) and three days 

(Tuesday – Thursday) 

(i) ET 

(ii) Percent anomaly 

(iii) Latitude 

(iv) Longitude 

 

   mm 

 

 

    % 

 

1 

 

 

-100 

 

50 

 

 

100 

 

75-80% 

 

 

Better than 

90% 

 

~ 4 km 

 

 

~ 4 km 
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4.7.  Validation 

4.7.1. Data required 

Sensors Parameters Time scale Source 

INSAT 

3D/3DR 

Imager 

Evapotranspiration 

(ET) and Latent 

heat flux (λE) 

Three hourly , Daily-day time, 

weekly, decadal, fortnightly 

and monthly scale 

PR chain of MMDRPS 

test bed 

In situ Eddy 

Co-variance 

(EC) Station  

Evapotranspiration 

(ET) & Latent heat 

flux (λE) 

Three hourly , Daily-day time, 

weekly, decadal, fortnightly 

and monthly scale 

MOSDAC and 

INCOMPASS Project, 

IMD 

Lysimeter 

(Data from 

few active 

stations will 

be used) 

ET Daily IMD 

Other 

satellites such 

as MSG IOC 

Evapotranspiration 

(ET) & Latent heat 

flux (λE) 

Three hourly , Daily-day time, 

weekly, decadal, fortnightly 

and monthly scale 

EUMETSAT / 

EUMETCAST 

Reanalysis 

 

Evapotranspiration 

(ET) & Latent heat 

flux (λE) 

Monthly scale GIOVANNI site 

4.8.  Sensitivity analysis of STIC model simulated latent heat flux on LST 
and Albedo  

The accuracy of STIC model heavily depends on the quality of land surface temperature data due 

to its role in retrieving TSD and M. One-dimensional sensitivity analysis was  carried out to quantify 

the impacts of uncertainty in TS and albedo on λE. Sensitivity analyses were conducted by 

increasing and decreasing LST systematically from its original value while keeping the other 

variables and parameters constant. This procedure was selected because the fluxes and other 

intermediate outputs of STIC model reflect an integrated effect of change in LST. Firstly, surface 

fluxes (λE) were computed using the original LST data obtained from EC tower observations. Then 

LST was increased and decreased at constant interval and a new set of fluxes were computed. It 

was found that λE was sensitive to the LST uncertainties with a magnitude of error ranging 2-12 

% for LST error in the range of 0.5 - 3K.  
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Table 4 : Sensitivity analysis of λE on LST 

 

 

Table 5.  Sensitivity analysis of λE on albedo 

 

     The deviation in λE from reference was found to be from 3-10 % albedo change in the range of 

of 2-10 % from its reference value. 
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Stations Geographic 

locations 

Deviation (%) in  λE from reference 

(LST 

±0.5K) 

+�  % 

(LST 

±1K) 

+�  % 

(LST 

±1.5K) 

+�  % 

(LST 

±2K) 

+� % 

(LST 

±2.5K) 

+� % 

(LST 

±3K) 

+� % 

Nawagam-Gujarat, semi 

arid cropland 

22.800N, 

72.570E 1.1 2.7 5.7 6.4 8.9 10.2 

Jaisalmer-Rajasthan, arid 

grassland 

26.990N, 

71.340E 0.9 1.7 3.6 5.8 7.4 9.6 

Samastipur-Bihar, Sub-

humid cropland 

26.000N, 

85.670E 1.6 2.1 4.2 7.2 9.1 11.6 

Stations Geographic locations Deviation in  λE from reference 

(Albedo±2%) 

 

(Albedo±5%) 

 

(Albedo±10

%) 

Nawagam-Gujarat, semi 

arid, cropland 

22.800N,72.570E 

3.2 4.6 8.4 

Jaisalmer-Rajasthan, 

arid grassland 

26.990N,71.340E 

2.6 4.1 7.9 

Samastipur-Bihar, Sub-

humid cropland 

26.000N,85.670E 

3.4 5.2 9.6 
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5. Net Surface Radiation (Rn) from INSAT series of data 

 

S. No. Product Name Spatial Resolution Temporal 

Resolution 

1 Net Surface Radiation (Rn) 

from INSAT series of data 

4 km x 4 km 30 minutes 

(7AM – 5 PM IST) 
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5.1.  Algorithm Configuration Information 

5.1.1. Algorithm name 

Net Surface Radiation (Rn) from INSAT series of data  

5.1.2. Algorithm identifier 

ISRO_INSAT NET_RAD 

5.1.3. Algorithm specification 

Version Date Prepared by Description 

1.0 15 March 2018 Rahul Nigam, and  

Bimal K. Bhattacharya 

Net Surface Radiation baseline 

document 

 

5.2.  Introduction 

Monitoring of the earth’s radiation budget is essential for improving our understanding of the 

earth’s climate and is changes since the radiative energy exchanges at the top of the atmosphere 

(TOA) and at the earth’s surface regulate the redistribution of energy and determine the energy 

balance of the earth-atmosphere system. Rather than examining radiation budget as a whole, it is 

very important to quantify its components, namely incoming and outgoing shortwave and 

longwave radiation, within the atmosphere, and at the surface. Radiation budget and its different 

components also listed in essential climatic variables of the emerging Global Framework for 

Climate Services (BojinSki et al., 2014). Net surface radiation (Rn) is a key parameter for energy 

and mass exchange between land and atmosphere and also play a vital role in many biological 

processes (Anderson et al. 2007). Radiative energy is the driving force for land surface 

meteorological and micrometeorological processes, such as sensible and latent heat 

(evapotranspiration) transfer. The surface radiation balance is one of the major factors that 

determine the surface temperature of the vegetation canopy and the underlying soil substrate. Thus, 

accurate estimates of Rn are essential for understanding the land surface energy distribution, the 

formation and transformation of air masses, snow melting calculations (Male and Granger, 1981), 

modeling crop transpiration and evapotranspiration, and addressing water resource management 

(Bisht and Bras, 2011). Rn (coupled with other energy balance component such as ground heat 

flux) serves as a key driving force for the evapotranspiration (ET). Estimation of Rn is necessary 

because it is a key input for land surface process and hydrological models, and are also used 

routinely to calculate evapotranspiration (Monteith, 1965; Kustas & Norman,1997), which is a 

critical component of agricultural, hydrological, and ecological research. Over the years, various 

ET and land surface models have been developed that use remote sensing and ancillary surface 

and ground-based observations (Bastiaanssen et al., 1998). All ET models require estimates of Rn 

at spatial scale. Mallick et al (2009) and Westerhoff (2015) were observed sensitivity of Rn from 

10 to 40% for ET over different agro-ecosystems.   
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5.2.1. Overview and background 

Rn is the difference between the incoming and outgoing shortwave and longwave radiation fluxes 

at the surface. Mathematically described as: 

nlnsn RRR                          (a) 

sisosins RRRR )1(       (b) 

lolinl RRR                          (c)  

where Rsi is the incoming shortwave radiation (Wm−2), Rso is the reflected outgoing shortwave 

radiation (Wm−2), which is calculated by Rso = α × Rsi, α is the shortwave broadband albedo 

(dimensionless), thus Rns is the net shortwave radiation, Rli is the incoming longwave radiation 

(Wm−2), Rlo is the outgoing longwave radiation (Wm−2), and Rnl is the net longwave radiation 

(Wm−2). Rn is normally positive during the daytime because net shortwave radiation dominates, 

but negative during the nighttime because net longwave radiation dominates (Allen et al., 1998). 

If all four components of Eq. (a) are known, the calculation of Rn is straightforward. Indeed, many 

radiation measurement towers measure these four components of radiation, thereby allowing us to 

determine Rn a given instance and location. Various satellite observations have been used to 

generate radiation products at regional and global scales (Liang et al., 2010, 2013b; Zhang et al., 

2014). MeteoSat Second Generation Spinning Enhanced Visible and Infrared Imager (MSG 

SEVIRI) Satellite observations from the visible to near-infrared spectrum have been used for 

estimating incident solar radiation and surface albedo, and thermal-infrared data for estimating 

longwave radiation. To map the Rn, it is necessary to combine remote sensing observations with 

surface and atmospheric data, where the spatial variability is mainly modeled by means of albedo, 

emissivity, and land surface temperature maps obtained from satellite data.  There are roughly two 

types of algorithms for estimating Rn (Liang et al., 2010), one calculates radiative quantities from 

the derived satellite products of all relevant atmospheric and surface variables (e.g., cloud, 

atmospheric temperature, LST, air and surface emissivity), and another estimates radiation directly 

from satellite observed radiance using a regression equation established from extensive radiative 

transfer simulations or using ground measurements.  

5.2.2. Objectives 

The objectives of this document are: 

(iv) To outline the algorithm for the estimation of hourly (Rn) and daily net surface radiation 

(Rndly) over land in clear and cloudy sky 

(v) To implement the algorithm in IMDPS GPR (Geophysical Parameter Retrieval) chain 

for automation of Rn and Rndly product generation 

(vi) To describe validation strategy against available in-situ measurements amd other 

concurrent satellite products. 
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5.2.3.   Instrument and characteristics of input products 

5.2.3.1 Indian geostationary satellite INSAT 3DR  

The Indian National Satellite (INSAT) system is a joint venture of the Department of Space (DOS), 

Department of Telecommunications (DOT), and India Meteorological Department (IMD). INSAT-

3DR carries a multi-spectral Imager (optical radiometer) capable of generating the images of the 

earth in six wavelength bands significant for meteorological observations, namely, visible (0.55-

0.75 µm), shortwave infrared (1.55-1.68 µm), middle infrared (3.8-4.1 µm), water vapor (6.5-7.1 

µm) and two bands in thermal infrared (10.3-11.3 µm & 11.5-12.5 µm) regions. It also has 19 

channel sounder, which is the first such payload to be flown on an ISRO satellite mission. The 

spatial resolution of VIS band is 1 km x 1 km and 4 km x 4 km for WV and thermal IR bands. The 

introduction of INSAT Meteorological Data Processing System (IMDPS) provides (Bhattacharya 

et al. 2013) both ‘full-globe’ and ‘sector’ data products in all the six bands of imager at half-an-

hour interval at 4 km spatial resolution in an automated mode. So, there are maximum 48 

acquisitions on a given day. Raw data after reception at each acquisition were corrected for servo, 

line loss, radiometry, stagger and oversampling removal using the INSAT 3DR data products 

scheduler. This results into automated generation of co-registered data in each band at Transverse 

Mercator (TM) projection.  The dimension of each band at each acquisition is 1617 rows x 1615 

columns for Asia Mercator sector product.  

5.2.3.2 Operational surface insolation product 

A spectrally integrated clear-sky and three-layer cloudy-sky models were developed to determine 

integrated atmospheric transmittances and instantaneous insolation. Half-an-hourly observations 

from an Indian geostationary satellite sensor, INSAT 3DR will be used to provide minimum ground 

brightness (surrogate of surface albedo) from previous 30 days, cloud top albedo, brightness 

temperatures, atmospheric water vapour as inputs to these models in addition to global eight-day 

aerosol optical depth at 550 nm and columnar ozone. A trapezoidal scheme will be implemented 

to obtain daily insolation (in MJm-2) from half-an-hour instantaneous insolation (Wm-2) throughout 

the day for all-sky conditions (clear + cloudy). The whole algorithm has been operationalized 

(Bhattacharya et al, 2010 & 2012b) and daily insolation product is available at 4 km from INSAT 

3D and at 8 km from Kalpana-1 spatial resolution respectively with Transverse Mercator projection 

routinely from MOSDAC site (http://www.mosdac.gov.in).   

5.2.3.3 Operational proposed land surface albedo product  

The proposed algorithm for Rn will use the other proposed INSAT land surface albedo three hourly 

or daily composite product in the IMDPS operational chain.  

5.3.  Inputs 

5.3.1. Image and pre-processing data (Dynamic) 

Table 1 

http://www.mosdac.gov.in/
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Parameter Resolution Accuracy Source 

Instantaneous insolation product of 

Asia Mercator sector 

Pixel (4 km x 4 km) 12-18% PR chain of 

IMDPS 

Instantaneous land surface 

temperature (LST) product  

Pixel (4 km x 4 km) 10-15%  

Instantaneous cloud mask Pixel (4 km x 4 km)   

Instantaneous Out going longwave 

radiation (OLR)  

Pixel (4 km x 4 km) 1-2%  

30-day dynamic composite of 

proposed land surface albedo 

product of Asia Mercator sector 

Pixel (4 km x 4 km)   

Geolocation file containing latitude 

and longitude corresponding to co-

registered Imager data 

Pixel wise Less than 

one pixel 

DP h5 product  

5.3.2. Other auxiliary data and model inputs  

Daily land surface emissivity will be generated from ten-year historical data of MODIS or through 

modelling of land emissivity as a function of 10-day (pre and post monsoon season) or 30-day 

(monsoon season) NDVI composite as mentioned in table 2.  

Table 2 

Parameters Source 

Daily emissivity from 10-year historical data 

from MODIS (2008-2018) 

http://modis-atmod.gsfc.nasa.gov 

OCM -2 and AWiFS mosaic NDVI http://vedas.sac.gov.in 

 

5.3.3. Operational product of WRF short-range forecast 

Weather Research and Forecasting (WRF; Skamarock et al., 2008) Model version 3.1 is used for 

All India Short range weather forecast. WRF is a limited area, non-hydrostatic, primitive equation 

model with multiple options for various physical parameterization schemes.  

The WRF Model is integrated in a triple domain configuration with a horizontal resolution of 45 

km, 15 km and 5 km for the All India, with grid points 260×235, 352×373 and 676×721 in x and 

y directions for the domains 1, 2 and 3, respectively. The model has 36 vertical levels with the top 

of the model atmosphere located at 10 hPa. The WRF 3D-Var is used for the assimilation of all 

available conventional including ISRO-AWS data and satellite observations to improve the model 



                     INSAT-3D Incremental ATBD (MMDRPS), November 2018                   68 

 

initial conditions. The operational WRF short-range forecasts (Kumar et al., 2011), available at 

MOSDAC site used climatological land surface and atmospheric parameters from global database 

and assimilated all available conventional including ISRO-AWS and satellite observations (Kumar 

et al., 2011; Singh et al., 2011) from India such as Oceansat-2 scatterometer wind data and other 

International agencies (e.g. EUMETCast).  The operational forecast is available at finer spatial 

resolution (~ 5km) at hourly interval upto 72 hours. In this algorithm only temperature at 2-meter 

height from surface will be used for estimation of Rn.   

Parameters Source 

Operational hourly forecast output from WRF at 0.05° x 0.05° spatial resolution 

for the following parameters in ASCII format (latitude, longitude, parameter) 

a) Air temperature (K) at 2 m height 

MOSDAC 

 

5.4. Algorithm functional specifications 

5.4.1. Clear sky net surface radiation (Rnclr) 

Three hourly clear sky day time net radiation over land will estimated using land surface 

temperature, albedo and surface insolation. Rnclr will estimated as function of net shortwave (Rnsclr) 

and net longwave (Rnlclr) : 

nlclrnsclrnclr RRR         (1) 

Rnsclr will be function of instanteous incoming shortwave (Rsiclr) and albedo (α) and in this 

algorithm the incoming shortwave radiation will be taken from already developed and 

operationalized INSAT-3D product. Whereas, albedo will be taken from the proposed land albedo 

product from INSAT data. Rnsclr will be computed only for day-time.  

siclrnsclr RR )1(          (2) 

Now net longwave radiation (Rnlclr) will be function of incoming (Rliclr) and outgoing (Rloclr) 

longwave radiation 

loclrliclrnlclr RRR 
         (3) 

Rliclr is a defined as 

4
ialiclr TR             (4) 

Where, 

Ɛa = Air emissivity, σ= Stefan Blotzmann constant & Ti = Air temperature  

 Ɛa will be estimated using air emissivity (Bastiaanssen et al, 1998) and defined as 
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09.0ln85.0 swa T       (5) 

Where, Tsw = Atmospheric Transmissivity  

Tsw will be derived from the ratio of incoming shortwave radiation (Rsi) to extra-terrestrial radiation 

(Rext). The extra-terrestrial radiation will be computed using astronomical units for INSAT pixel 

for each instanteous acquisition. The air temperature (Ti) will be integrated from hourly daily 

weather forecast from WRF as mentioned in section 2.3.3.  

Rloclr again is function of surface emissivity and land surface temperature as defined in equation  

4
ssloclr TR              (6) 

Where, Ɛs = Air emissivity, σ= Stefan Blotzmann constant & Ts = Land Surface Temperature 

(LST) 

The daily surface emissivity will be generated from 10-years MODIS emissivity product or from 

NDVI products from OCM-2, AWiFS India mosaic products as per the availability and quality of 

data. The land surface temperature will be taken from already operationalize INSAT product. 

Hence by doing computation of equations 1 to 6 Rnclr will be estimated for day time. In night time 

only net longwave radiation will exist hence only equation (3) will be taken in consideration for 

computation of clear sky Rnclr.  

5.4.2. Cloudy sky net surface radiation (Rncld) 

For cloudy pixel the empirical model will be developed among INSAT derived out going longwave 

radiation (OLR), insolation product and measured net radiation from AMS and eddy tower data 

over different agro-climatic conditions of India for day and night time separately.  

Net shortwave radiation in cloudy pixel (Rnscld) 

Rnscld_day = (1-α) Rsicld   ( 7) 

α- Albedo will computed from moving last 20-day composite.  

Incoming longwave radiation in cloudy pixel (Rlincld) during daytime  

 Rlincld_day = f (Ta, RH, CI)    (8) 

Where Ta = Air temperature, RH = Relative humidity, CI = Clearness Index 

Incoming longwave radiation in cloudy pixel (Rlincld) during night time 

Rlincld_night = f (Ta, RH)   (9) 

Where, Ta = Air temperature, RH = Relative humidity 

Outgoing longwave radiation in cloudy pixel (Rlocld) during day and night time 

Rlocld = f (OLR, LULC)    (10) 
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Where, OLR= Out Going Long Wave Radiation, LULC = Land Use Land Cover ( From AWiFS, 

provided by NRSC) 

To estimate Rnclr in cloudy sky first the cloudy pixel will be identified by using INSAT generated 

cloud mask for each dataset. Then these empirical model will be applied at spatial scale from 

cloudy-sky acquisition for cloudy pixels. The overall flow of algorithm is shown in Figure 1.  

For each hourly acquisition, clear sky and cloudy sky models simultaneously applied and will 

generate Rn over Indian land mass. To generate daily average net radiation (Rndly) at least one 

acquisition is required in each two hours to compute Rndly. If there is two consecutive hourly data 

gap exists within 24-hours’ timeframe, then daily net radiation will not be computed. For each 

hourly acquisition, clear sky and cloudy sky models simultaneously applied and will generate Rn 

over Indian land mass. 

5.4.3. Sensitivity Analysis 

The 1-dimensional sensitivity analysis of whole algorithm will be done for net shortwave and net 

longwave in clear sky and cloudy sky. For net shortwave in clear and cloudy sky albedo and for 

net longwave clear sky LST sensitivity will be evaluated. For cloudy sky, weather forecast based 

air temperature and humidity along with INSAT derived OLR sensitivity will be done in future. 

The high resolution (3 Km) and high temporal (1-hour) weather forecast from IMD for evaluation 

of the surface temperature, relative humidity will also be used simultaneously with MOSDAC 

weather forecast to develop algorithm followed by sensitivity analysis. 

 

 

  

Figure 1 . Flow chart of algorithm for estimation of net radiation (Rn) over land 
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5.4.4. Steps for operational implementation 

The following steps need to be followed for operational implementation of net radiation over land 

(Rn) product generation: 

viii) The hourly temperature and humidity data at 2-meter surface height from forecast from 

WRF (ASCII format) at 0.05 o X 0.05 o spatial grid.  

ix) Conversion of all ASCII outputs of (i) and (ii) to raster of dimension approx. 0.04o X 

0.04o grid resolution as per the INSAT 3D insolation product 

x) The sub setting of LST, albedo and insolation products as per the bounds of Asia sector 

products.    

xi) Integration of INSAT derived insolation, albedo, LST with 2-D surface of WRF 

variables in to physical model to generate clear sky net radiation (Rn). 

xii) Integration of INSAT derived cloud mask and insolation in to empirical model to 

generate cloudy sky net radiation (Rn). 

xiii) The clear and cloudy sky net radiation at each hour will be used to generate hourly net 

radiation (Rn) over Indian land mass.    

xiv) The average of 24-hours net radiation will be used for generation of daily net radiation 

(Rndly). The pre-condition for generation of Rndly is that there will no consecutive two-

hour data loss within 24-hours of a day.  

 

 5.5.  Outputs  

5.5.1. Format of the output and the domain 

 

 

Parameter Unit Min Max Accuracy Resolution 

Three hourly Net 

radiation over land 

consists   

(iv) Rn 

(v) Latitude 

(vi) Longitude 

 

 

W m-2 

 

 

 

-100 

7°N 

67°E 

 

 

650 

37°N 

98°E 

 

 

70-75% 

 

 

~ 4 km 
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Parameter Data 

format 

Upper left and 

lower right corner 

coordinates 

Scan lines 

and columns 

Gains and offsets 

for converting 

actual values 

Three hourly Net 

radiation over land 

consists   

(i)   Rn 

(ii)   Latitude 

(iii) Longitude  

HDF5  

 

 

Upper left: 

67°37'E, 36°53'N 

Lower right: 

97°42'E, 7°34'N 

Indian 

domain 

 

 

Gain for Rn 

data 0.1, offset 

zero 

 

5.6. Validation 

5.6.1. Data required   

To validate the INSAT derived instantaneous hourly and daily net radiation in situ measured and 

globally products from other satellite as well as model will be used. The detailed requirement of 

satellite and in situ data is given in table 5. For validation one-year data covering all season will 

be used.  
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Table 5 

Sensors Parameters Time scale Source 

INSAT 3DR 

Imager 

Net radiation 

(Rn) 

Hourly and Daily PR chain of IMDPS test bed 

AMS  and Eddy 

Co-variance 

Station  

Four component 

radiation 

measurements  

Hourly data MOSDAC and other projects 

NASA earth 

observations 

Net radiation Daily (0.250 x 0.250) www. neo.sci.gsfc.nasa.gov 

MSG SEVIRI Net radiation Daily  www.eumetsat.int 
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6. Daily Surface Net Shortwave Radiation over Indian Ocean 
using half-hourly Outgoing Longwave Radiation Data from 
Indian Geostationary Satellites 

 

S. No. Product Name Spatial Resolution Temporal Resolution 

1 IMG_NSRO 4 km x 4 km Daily average 
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6.1. Algorithm configuration information 

6.1.1 Algorithm name:  

Daily Surface Net Shortwave Radiation over Indian Ocean using half-hourly Outgoing 

Longwave Radiation Data from Indian Geostationary Satellites (NSRO)  

6.1.2. Algorithm Identifier:  

INSAT_IMG_NSRO 

6.1.3. Algorithm Specification 

 

Version Date Prepared by Description 

1.0 

1.1 

16.11.2016 

08.08.2018 

 

Rashmi Sharma and 

Pradeep Thapliyal 

Net surface shortwave radiation over 

Ocean valid in the warm pool region 

using high spatio-temporal resolution 

OLR observations from geostationary 

satellite 

 

6.2. Introduction 

The shortwave radiative flux absorbed by the ocean surface plays an important role in the 

atmospheric and oceanic circulation through air-sea interaction particularly over the warm pool 

region of the Indian Ocean [Lukas, 1989]. The accurate information of surface Short Wave 

Radiation (SWR) would also result in significantly improved representation of the intra-annual 

oceanic surface processes and long term surface variability. The diurnal variations in the Sea 

Surface Temperature (SST) are driven by the surface solar radiation that is modulated primarily by 

the presence of cloudiness. The SWR data available through buoys have sparse coverage due to the 

large cost and maintenance involved. In the recent years there have been efforts to establish an 

accurate estimate of the surface shortwave radiation budget (SRB) over Tropical Ocean and to 

assess its impact on the climate change.  

The tropical oceans with SST usually greater than 28 °C, forms a major part of the largest warm 

pool on the earth. The variations of surface insolation over these warm pool regions are primarily 

due to the variations in cloudiness which are manifestation of deep convection [Shinoda et al., 

1998; Sengupta et al., 2001]. The long-term surface measurements of radiative fluxes are limited 

primarily to the continental regions [Ohmura and Gilgen, 1991]. The satellite estimates of 

cloudiness and top of the atmosphere fluxes have been used in conjunction with radiative transfer 

models to produce global estimates of SRB over land and ocean [Li, 1995; Rossow and Zhang, 

1995; Whitlock et al., 1995; Gupta et al., 1997]. The most popular algorithms used in computing 
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SRB estimates from satellite data are described by Pinker and Laszlo [1992] and Darnell et al. 

[1992].  

The global Analysis, such as the National Center for Environmental Prediction (NCEP) [Kalnay et 

al., 1996], National Aeronautics and Space Administration/Data Assimilation Office (NASA/DAO) 

[Schubert et al., 1993], and the European Centre for Medium-Range Weather Forecasts Reanalysis 

[ERA, 1999] projects have provided climate researchers with alternative estimates of the earth’s 

SRB. Bony et al. [1997] used data from the NASA/DAO and NCEP reanalysis for the period 1987–

88 to compare SWR at the surface to satellite estimates in the Tropics (30°S–30°N). They found 

the annual mean bias in NCEP SWR over the tropical ocean ranging from -10 to -30 W m-2, while 

NASA/DAO SWR biases ranged from -50 W m-2 in subsidence regions of the subtropics to -25 W 

m-2 in convective regions near the equator.  

Table-1 provides a summary of presently available SWR products from different source alongwith 

their merits and demerits.   

Note: LY products largely known as Large and Yeager product follows the earlier approach of Large and Nurser [2001], 

in which the NCEP surface radiation and precipitation are replaced by satellite-based estimates. 

The present Algorithm Theoretical Basis Document describes a methodology to estimate SWR 

from half-hourly estimates of Outgoing Longwave Radiation (OLR) obtained from Kalpana 

observations.  Although we have shown the results with Kalpana derived OLR, but the same 

algorithm has been tested with the data from other Indian GEO satellites.   

Sparse observationsAccuratehourlyBuoy Observations

~10 km/

Daily

1°/ 

Daily

1°/ 

3-hourly

280 km/

3-hourly

1-2°/

6-hourly

Spatial/

Temporal 
Res.

Computationally expensive

(Non-availability in real time)
Global Product

GEWEX

(Satellite data + RT models)

Computationally expensive

(Non-availability in real time)
Global Product

ISCCP

(Satellite data + RT models)

Computationally expensive

(Non-availability in real time)
Global Products

LY products (Large and 
Yeagre, 2001)

Satellite – Model merged

Regional productsFast and Simple
Empirical relations

(Shinoda et al, 1998)

Source Advantage Disadvantage

Atmospheric models

(Reanalysis products)
Global Products Inaccurate

Sparse observationsAccuratehourlyBuoy Observations

~10 km/

Daily

1°/ 

Daily

1°/ 

3-hourly

280 km/

3-hourly

1-2°/

6-hourly

Spatial/

Temporal 
Res.

Computationally expensive

(Non-availability in real time)
Global Product

GEWEX

(Satellite data + RT models)

Computationally expensive

(Non-availability in real time)
Global Product

ISCCP

(Satellite data + RT models)

Computationally expensive

(Non-availability in real time)
Global Products

LY products (Large and 
Yeagre, 2001)

Satellite – Model merged

Regional productsFast and Simple
Empirical relations

(Shinoda et al, 1998)

Source Advantage Disadvantage

Atmospheric models

(Reanalysis products)
Global Products Inaccurate

Table-1 SOURCES OF SWR
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6.3. Physical basis of the SWR Algorithm 

The OLR-based SWR estimates have better accuracy for convective regions because the variations 

of surface insolation over the warm pool ocean region are primarily due to the variations in 

cloudiness. Variations in cloudiness are manifestation of deep convection; therefore, OLR is a good 

proxy for convection. Shinoda et al [1998] showed in their study that the coefficient of correlations 

between SWR and OLR were maximum (~0.8) at the equator that decreases as one goes away from 

the equator and reduces to less than 0.5 beyond 10˚N/S latitudes.  

Shinoda et al. [1998] proposed a simple empirical relationship (referred hereafter as SH98), valid 

over warm pool oceanic regions, to estimate the daily averaged SWR from the daily averaged OLR 

products obtained from the NOAA polar orbiting satellite. Shahi et al. [2010], proposed the use of 

a high temporal resolution data of OLR to improve the diurnal sampling in order to match that of 

the buoy SWR in computing daily averaged estimates. They demonstrated a significant 

improvement in the SH98 by using daytime average of OLR obtained from half-hourly 

geostationary satellite observations. The rationale behind using the daytime OLR as against daily 

(24-hr average OLR) is that the daily averaged SWR is affected solely by the presence of day-time 

clouds, and therefore the algorithm performs better than that used in SH98. The empirical 

relationship developed by Shahi et al [2010], however, was developed for a single buoy location, 

and is not valid over other locations, particularly over different latitude regions. Shahi et al. [2011] 

further improved the algorithm to make it valid over a wide Indian Ocean region by including the 

solar zenith angle in the empirical formulations. The detailed formulation is given in the following 

section. 

6.4. Formulation of the SWR Algorithm 

The improved algorithm developed at Space Applications Centre (SAC) to compute the SWR from 

OLR observations from geostationary satellites is described in detail by Shahi et al. [2011]. The 

methodology was developed using a large collocated dataset of the spatially well distributed (in 

latitude) buoy measured SWR and the half-hourly estimates of OLR from geostationary satellite 

observations over Indian Ocean region. The generalization of the empirical relationship has been 

achieved by normalizing the SWR values to nadir locations by making use of the solar zenith angle 

information.  

The in-situ SWR is the down-welling shortwave radiation measured by the Research Moored Array 

for African-Asian-Australian Monsoon Analysis and Prediction (RAMA) buoy. Daily average 

shortwave radiation is computed as a 24 hour average. Fig.1 shows the locations of the 13 RAMA 

buoys in the warm pool region of Indian Ocean used for the algorithm development for the period 

of 2002-2009.  The OLR products have been obtained from EUMETSAT for the Indian Ocean 

coverage of the Meteosat-5 (sub-satellite point at 57°E) upto December 2006 and Meteosat-7 (sub-

satellite point at 63°E) beyond January 2007. Meteosat derived OLR was estimated from the half-

hourly observations in the thermal infrared (TIR, 10.5-12.5µm) and water vapor absorption (WV, 

5.7-7.1µm) channels at spatial resolution of 5 km, using the algorithm developed by Schmetz and 

Liu [1988]. The accuracy of geostationary satellite derived OLR is shown to be ~3 W m-2 [Schmetz 
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and Liu, 1988; Singh et al., 2007] using radiative transfer model based simulation studies. The 

validation of geostationary satellite derived OLR with the broadband OLR observations from the 

Clouds and Earth’s Radiant Energy System (CERES) onboard polar orbiting satellites TRMM and 

EOS-Terra reveal the accuracy to be ~7 W m-2 at a daily time-scale [Ba et al., 2003].  

A collocated dataset of daily averaged SWR (24-hr average) using buoy data and daytime averaged 

OLR (duration of sunshine) was generated for each of the buoy locations. The daytime averaged 

OLR is obtained using average of the half-hourly observations between sunrise to sunset (computed 

using solar zenith angle less than 80o).  A training dataset, using collocated observations from each 

of the buoys that represent complete annual cycle, was created for the algorithm development and 

the remaining data treated as the independent testing dataset.  

SAC-Algorithm [Shahi et al., 2011] o used the normalized SWR w.r.t. the nadir viewing angle, i.e. 

SWR sec2(), in the empirical formulation, where  is solar zenith angle at local noon. The 

polynomial least square equation between normalized SWR and OLR was found to be:     

 (SWR) sec2() =  -0.002434 (OLR)2 + 2.5401 (OLR) – 220.75 

which provides the final expression for computing the SWR as: 

SWR = cos2() [-0.002434 (OLR)2 + 2.5401 (OLR) – 220.75] 

 

Figure 1: Locations of RAMA buoys in Indian Ocean overlaid on a sample Meteosat 

OLR coverage 
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The improved algorithm is referred as SAC-SWR Algorithm. The root-mean-squared-error 

(RMSE) computed for SAC-SWR estimates from the buoy observations was found to be ~28 W 

m-2 in the testing dataset in contrast to the ~39 W m-2 obtained using SH98. 

The SAC-SWR algorithm was also compared with other datasets for the year 2007 available from: 

(i) Global Energy and Water-Cycle Experiment Surface Radiation Budget (GEWEX-SRB) project 

of NASA World Climate Research Programme (WCRP), (ii) International Satellite Cloud 

Climatology Project Surface Radiative Flux Dataset (ISCCP-FD), and (iii) National Center for 

Environmental Prediction (NCEP) analysis. The Spatial resolution of GEWEX-SRB, ISCCP-FD 

and NCEP SWR products are 1°, 2.8° and 1.875°, respectively. The RMSE computed for different 

SWR products from buoy SWR shows that RMSE for SAC-SWR is lowest for the entire range of 

SWR values, indicating that the accuracy of the SAC-SWR is best under all sky conditions 

followed closely by GEWEX-SWR.  

For combined dataset RMSE for SAC-SWR is 27.3 W m-2, which is the smallest, followed by 

32.7, 37.5 and 59.6 W m-2, respectively, for GEWEX, ISCCP and NCEP SWR products. The 

estimate of the standard error on weekly time scales is much smaller than that on daily time 

scales, with values of 11.8, 13.4, 15.3, and 32.8 Wm−2 for SAC, GEWEX, ISCCP, and NCEP 

products, respectively. 
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6.5. Algorithm Flow Diagram 

We show below a schematic diagram of the SWR algorithm training and retrievals.  

   

 

6.6. Operational Implementation 

Following steps are used to compute daily average SWR:  

 Half-hourly OLR data from Indian GEO Satellites is acquired for a given day. 

 For each observation, solar zenith is computed to ascertain the solar illumination conditions 
i.e. to get information about local time. 

 From half-hourly OLR data, the daytime averaged OLR (OLRdayavg) is computed at every 
pixel by restricting the solar zenith angle () to less than 80 at each pixel during averaging. 

 Solar zenith angle at local noon () is computed at each pixel location corresponding to the 
given day of observation. (In bullet 2, also solar zenith is computed) 

 Using land/sea flag information, the daily averaged Surface Shortwave Radiation 
(SWRdayavg) is computed over Indian ocean region from the empirical relationship 
developed at SAC: 

Surface Observations
SWR from RAMA Buoy at 13 

locations over Indian Ocean during 
2002-2009

Compute half-hourly OLR 
following Schmetz and Liu (1988)

Half-hourly OLR estimates 
from Indian Geostationary 

satellite 

Training

Regression equation for SWR as a function of 
OLR and solar elevation angle 

SWR = cos2() [-0.002434 (OLR)2 + 2.5401 (OLR) – 220.75]

Compute daily 
average SWR

Compute daytime 
average OLR by 

restricting  < 80

Retrieval

Satellite Observations
Half-hourly IR and WV channel 
observations from Meteosat-5/7 
(Indian Ocean coverage) during 

2002-2009

Compute day-time average OLRCompute daily average SWR 

Collocate daily averaged buoy 
SWR and Meteosat OLR

Compute solar zenith angle 
at local noon () and get 

land/sea flag at each pixel

Fig.2 Schematic diagram of the SWR algorithm training and retrievals

Compute solar zenith angle 
() at each location for 

every half-hourly OLR data
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SWRdayavg = cos2() [-0.002434 (OLRdayavg)2 + 2.5401 (OLRdayavg) – 220.75] 
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7. Clear Sky Brightness Temperature from INSAT-3D/3DR 
IMAGER 

 

S. No. Product Name Spatial Resolution Temporal Resolution 

1 IMG_CSBT 0.5 x 0.5 Grids 30 minutes 
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7.1. Algorithm Configuration Information 

7.1.1. Algorithm Name 

Clear Sky Brightness Temperature from INSAT-3D/3DR Imager 

7.1.2. Algorithm Identifier       

ISRO_INSAT_IMG_CSBT 

 7.1.3. Algorithm Specification 

 

7.2. Background 

Numerical Weather Prediction (NWP) models has become an indispensable tool for providing 

weather forecast. These models are immensely benefited from various in-situ and satellite 

observations. These observations are used for correcting model forecast trajectories, model output 

validation and model parameter tuning. Ingestion of various observations has now become a state-

of-art and also rapidly growing to meet the challenges posed by huge amount of available 

observations. With the advancement and maturing of data assimilation (DA) techniques direct 

satellite observed radiance (or brightness temperatures) are operationally assimilated by various 

operational agencies. Assimilation of satellite observed radiances can be primarily subdivided into 

two classes: assimilation of clear sky brightness temperature and assimilation of all sky (clear and 

cloudy both) observation.  Though, cloudy regions probably have a large impact on the accuracy 

of the NWP model predictions (McNally 2002; Kumar et al. 2014), but the direct assimilation of 

cloudy radiances is still beyond the scope of existing global NWP systems (Pavelin et al. 2008). This 

is due to the fact, that assimilation of cloudy radiances requires an observation operator having 

realistic representation of cloud effects, and a NWP model capable of accurately representing 

cloud at same scales (Chevallier et al. 2004). Such kind of capabilities of existing NWP model is in 

development phase and fast radiative transfer (RT) model have large uncertainties over cloudy 

regions, and have complex nonlinearity in assimilation when clouds exist (Bauer et al. 2011). 

Therefore, cloudy infrared (IR) radiance is still part of ongoing research and development activities 

and is not the part of operational assimilation system. Nevertheless, the method of assimilation of 

clear sky brightness temperature (satellite observation which are not affected by the presence of 

clouds) has already reached to matured stage, therefore, used operationally in providing weather 

forecast. Thus clear sky brightness temperature (CSBT) is a very important parameter from the 

NWP data assimilation applications.  clear sky radiance assimilation has become the indispensable 

part of assimilation system. For clear sky radiance assimilation, it is essential to eliminate the 

cloudy pixels in order to retain only clear-sky radiances only. Usually a binary mask (clear/cloudy) 

Version Date Prepared by Description 

1.0  

 

01.03.2018 M. V. Shukla, 

P. K. Thapliyal, and  

C. M. Kishtawal 

CSBT product is useful for radiance  

assimilation in NWP model  
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is prepared from satellite data (Zupanski et al. 2007; Razagui et al. 2011). Pangaud et al. (2009) 

and Eresmaa (2014) found that if cloudy radiances are assimilated as clear radiances, the quality 

of the NWP analysis/prediction impacted negatively. 

7.3. Objective 

The main objective of this document is to provide the theoretical basis for calculating clear sky 

brightness temperature (CSBT) for INSAT-3D/3DR TIR-1 and water vapor channels. The proposed 

algorithm will be applied to estimate CSBT over 0.50x0.50 field of regard (FOR) along with 

statistical parameters and a confidence flag that will help in using CSBT value in DA process. 

CSBT product is calculated for only clear pixels identified by INSAT-3D/3DR imager cloud mask 

(CMK) product. The algorithm has no limitation based on geographical location, therefore, can be 

applied to generate products over full disk or sector products. Nevertheless, the CSBT product is 

generated from only full disk product.  

7.4. Inputs 

7.4.1. Image and preprocessing data (dynamic) 

Parameter Resolution Quantization Accuracy Source 

Radiometric and geometric 

corrected gray count values of  

split window IR channel (10.5-

11.5 m and 11.5-12.5 m) and 

WV channel (6.7 m) 

All the data is required in fixed 

lat-lon grid.  

pixel 10 bit -- Derived from raw 

data by DP (data 

processing) 

Gray value to brightness 

temperature conversion table 

- - 0.3 K Derived by DP 

Cloud Mask pixel   Operational L2 

product 

Geo-location file Pixel - 4 Km Derived by DP 

7.5. Algorithm Functional Specifications 

7.5.1. Overview 

The clear sky brightness temperature (CSBT) from INSAT-3D/3DR imager is intended to be 

generated at 0.50x0.50 field of regard (FOR). CSBT product is generated at much coarser resolution 

than the actual resolution of INSAT-3D/3DR imager observations which are available at nominal 

resolution of ~4 km at nadir for TIR-1, TIR-2, MIR and ~8 km for water vapor.  The gridding 

(averaging) over all pixels within 0.50x0.50 FOR. This averaging is done to enhance the signal to 
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noise ratio and to make observation less correlated. Data assimilation warrants very accurate, and 

uncorrelated observations. CSBT product is aimed towards providing observations. 

7.5.2. Generation of CSBT 

As it is evident from the name of parameter, CSBT is generated for clear sky pixels. Since this 

product is mainly used in NWP data assimilation, it is re-gridded at coarser resolution of 0.50x0.50 

grid. This helps in reducing noise in value in BT as well as creating uncorrelated observations. 

Generation of CSBT involves following steps: 

7.5.3. Preparation of latitude-longitude grid 

INSAT-3D and INSAT-3DR are orbiting in geostationary orbit and are located at 83.0 0E and 74 
0E, respectively. Therefore, the geographical extent of observed area by both the satellites is 

different particularly in east-west direction. As both the satellites are in geostationary orbit, thus in 

principle, the viewing location of each pixel does not vary for different acquisitions. Based on the 

fixed grid of INSAT-3D and INSAT-3DR, a latitude-longitude equal grid is selected and all further 

processing in done the same grid.  

For INSAT-3D grid information is as follows: 

Min Latitude = -81.0;        grid size=0.5 ;     grid points in north-south direction=325 

Min Longitude = 1.0;        grid size=0.50 ;    grid points in east-west direction=325 

For INSAT-3D grid information is as follows: 

Min Latitude = -81.0;        grid size=0.5 ;     grid points in north-south direction=325 

Min Longitude = -3.0;        grid size=0.50 ;    grid points in east-west direction=325 

7.5.4. Averaging of parameters 

A simple box average method is adopted to generate parameters. CSBT, satellite zenith angle and 

solar zenith angle and land fraction (for a given grid) are generated. In data assimilation, satellite 

and solar zenith angles and land fraction are required along with CSBT. As already stated that 

CSBT is calculated for clear pixels only, therefore, for averaging operational cloud mask product 

is also used. INSAT-3D/3DR operational cloud mask product provides a flag which has one of the 

four values 0,1,2 and 3. 0 indicates clear pixel, 1 indicates cloudy pixel, 3 is representative of 

probably clear pixel and 3 indicates probably cloudy pixel. While calculating average of 

aforementioned parameters, the total of pixels (N), clear pixels (N1) and probably clear pixels (N2) 

within a given grid are also counted. These counts (N, N1 and N2) determine whether CSBT 

product will be computed for a given grid or not. A dynamic threshold which is 10% of total count 

value N is taken. If total number of clear and probable clear pixels (N1+N2) is less than the 

threshold value and CSBT and other products are not generated, but if this is greater than the 

threshold value then it is checked if N1 is also greater then threshold or not. However, in both the 

cases CSBT and other parameters are computed but if N1 is less than the threshold then quality 

flag of CSBT is termed as not very good quality.  
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In addition to the average of parameters, standard deviation of BT for a given box is also computed. 

This standard deviation is also provided along with CSBT values to help in deciding the spread of 

BT value for a given box. More standard deviation may help in flagging out some of the CSBT 

value as it may have some contamination of cloud (or cloud edges) 

7.5.5. Quality indicators 

As it is already discussed in previous section that a flag and standard deviation values are generated 

along with CSBT product to provide user an indication of quality of CSBT value. The major 

confidence in quality is determined by the number of clear pixels with a grid box, if more than 50% 

of grid is covered by clear pixels then that box is given the highest confidence flag 0, but if this 

number is between 25 to 50% the flag=1 and if it between 10 to 25% then flag=2. 

These various flags are given to user to give them a flexibility in optimizing the number of data 

points in assimilation and the quality of data set.   

7.6 Outputs 

7.6.1 Format of the output and the domain 

7.7. Validation 

7.7.1. Data required   

Clear-sky brightness temperature (CSBT) from INSAT-3D/3DR imager will be carried out by using 

various analysis such as NCMRWF analysis, GFS analysis and various reanalysis such as ERA 

interim reanalysis. These various analysis and reanalysis will be used to generate brightness 

temperatures using RTTOV or CRTM radiative transfer models. The validation cannot be carried 

out for each half-hourly product but validation will be carried out for only synoptic hours.  

For validation at specific time period special launch campaign is needed wherein various 

radiosondes are launched and these soundings could be used in conjunction with radiative transfer 

model for CSBT validation.  

  

 

 

 

 

Parameter Unit Min Max Accuracy Resolution Format 

Clear Sky 

brightness 

temperature 

K 

 

180.0 340.0 1-2K 0.5 x 0.5  HDF5 
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Sensors Parameters Time scale Data set taken Source 

INSAT-

3D/3DR 

Imager 

CSBT On synoptic 

hours 

Various analysis 

and reanalysis 

products 

Data is freely 

available from 

various websites 

INSAT-

3D/3DR 

Imager 

CSBT Depends on 

RAOB launch 

Soundings from 

specifically 

launched RAOBs 

Special field 

campaign is needed 
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8. Clear-Sky Brightness Temperature Products from 

INSAT-3D/3DR Sounder 
 

S. No. Product Name Spatial Resolution Temporal 

Resolution 

1 SND_CSBT 3 x 3 Sounder Pixels 

(~30 km x 30 km) 

1 hour 
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8.1. Algorithm configuration information 

8.1.1 Algorithm name 

 Clear-Sky Brightness Temperature from INSAT-3D/3DR Sounder 

8.1.2. Algorithm Identifier 

INSAT_SND_CSBT 

8.1.3. Algorithm Specification 

 

Version Date Prepared by Description 

1.0 

 

08.08.2018 M. V. Shukla,  

P. K. Thapliyal, and  

C. M. Kishtawal 

Clear sky brightness temperature 

products from INSAT-3D/3DR Sounder 

for use in radiance assimilation in NWP 

model 

 

8.2. Introduction 

The aim of Clear-sky brightness temperature (CSBT) product is provide area average brightness 

temperatures (Tb) for representing cloud free pixels. These products have been recently developed 

by Space Applications Centre under INSAT Meteorological Data Processing System (IMDPS) 

project to be used in radiance assimilation in the numerical weather prediction (NWP) models. The 

high-temporal resolution data of INSAT-3D Sounder (hourly observations) would be extremely 

useful for monitoring and predicting of the fast developing weather systems through 4D-VAR 

radiance assimilation in NP models.  

8.3. Algorithm Description 

The following sections provide details of the procedure for generating CSBT products: 

8.3.1. Cloud detection 

The first step in CSBT product generation is to filter out cloud contaminated pixels from the 

Sounder observations and generate a cloud-flag for each of the pixels. This section provides the 

physical basis for detection of the cloudy pixels from INSAT-3D Sounder observations. The output 

of cloud mask algorithm gives the degree of presence of a cloud in it. This information enables the 

subsequent steps to use this information for further processing. 

The cloud detection algorithm is carried out in three steps. The flow chart is shown in fig.1. 
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Fig.1: Flow chart of the Sounder cloud detection algorithm 

The cloud detection methodology for INSAT-3D sounder follows operational GOES sounder cloud 

detection procedure developed by Schreiner et al. (2001). This cloud detection algorithm uses 4 

infrared channels and a visible channel during daytime for cloud detection and 5 infrared channels 

for the detection of nighttime clouds. One additional infrared channel is used to detect clouds 

appearing at dawn time. The various channels used in cloud detection are summarized below: 

Ch#3 - 13.3 µm (“CO2 absorption”, used for detection of thin cirrus) 

Ch#6 - 12.6 µm  (“Moderate WV-absorption”, used in detecting some low level inversions) 

Ch#7 - 12.0 µm  (“Weak WV-absorption”, used in detecting low clouds and fog) 

Ch#8 - 11.0 µm  (“Longwave Window”, used in detecting various level of clouds) 

Ch#17 - 4.0 µm  (“Shortwave Window”, used to detect low clouds and fog at night) 

Ch#18 - 3.8 µm  (“Shortwave Window”, used to detect low clouds after sunrise) 

Ch#19 - 0.6 µm  (“Visible” band used in detecting various level of clouds during daylight) 
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A series of tests are applied using these channels to detect stratus, cirrus (thin and opaque), fog, 

snow and inversion. Here for cloud detection algorithm a 3x3 pixel field-of-regard (FOR) is used. 

The FOR is moved by 1 pixel sequentially in E-W and N-S (along and across the scan-line) to 

maximize the clear FOR detection. Two types of cloud flags are generated one each for the FOV 

(single pixel) and FOR (3 x 3 pixel box). In present algorithm the output contains three types of 

cloud-flags that are given by: 

0: Clear 

1: Cloudy 

2: Partially cloudy  

The cloud detection procedure is carried out in three steps to filters out cloudy pixels very 

accurately and efficiently:   

(a). The first step is a very gross check and is applied on a FOR of 3x3 pixel box. If it fails in the 

first check then the whole FOR is declared as cloudy and it moves to the next FOR. In case of 

passing the first step a series of tests are applied on the FOR in second step. In third and final step, 

a series of tests are applied on each FOV and the results of these tests decide the final outcome.  

(b). Primary Array Flag (PAF): This is first step of cloud detection to generate the primary array 

flag. Four tests are applied on a FOR to generate PAF. Generation of PAF requires computation of 

two thresholds Tmax and Tmin from ancillary information. Tmax and Tmin are computed using surface 

skin temperature information which is available either through AWS or from model forecast. Here 

model forecast is used for surface skin temperature.  

Tmax= TS + 20, and Tmin= TS - 20 

Where, TS is the surface skin temperature. After this calculation the following checks are applied: 

1) Visible reflectance of the warmest pixel in FOR computed from Ch#8 (11µm) must be less than 

a certain threshold value. The value of threshold for visible channel over land is 25% and over 

water is 7%. The value of threshold may vary for low surface temperature and low sun angles. If 

the surface skin temperature is less than 273K the threshold value over land is increased by a factor 

of 1.5. Similarly, to take care of low sun angles the land limit is multiplied by solar zenith angle. 

This test is possible only for day time. 

2) The Ch#8 Tb (11µm) of warmest pixel must be less than Tmax and must be greater than Tmin.  

3) Inversion test is applied on the difference of maximum Ch#8 Tb (11µm) and maximum Ch#18 

Tb (3.8 µm) within FOR. This test is applicable only during night time. For this test a threshold 

(Th1) is calculated using an empirical relation using the NET value of Ch#8 and Ch#18. 

Difference between the warmest pixel of Ch#18 and the warmest pixel of Ch#8 must be greater 

than the Th1 for a pixel to be clear.  

If any of these tests fail, then the whole box is assumed to be cloudy and not processed further, 

otherwise it will proceed for secondary array flag (SAF) procedure. 
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(c). Secondary Array Flag (SAF): The first step of SAF is to compute skin temperature 

empirically using three channels, Ch#8 (Tb8), Ch#7 (Tb7) and Ch#18 (Tb18) and two channels Ch#8 

(11µm) and Ch#7 (12µm). These empirical relations for skin temperature are as follows:  

TS3 = a0 + a1*Tb8 + a2* Tb7 + a3* Tb18              (using 3 channels) 

TS2 = b0 + b1* Tb8 + a2* Tb7      (using 2 channels) 

These coefficients are pre-determined from a large simulated matchup dataset. The standard tests 

for SAF are following:  

 The difference between TS3 and TS2 must not be greater than 2K.  
 The “cold sea test” only over ocean and this test fail if the highest Tb8 in FOR FOV is less 

than 270K. 
 The “reflected sunglint test” checks the difference between brightness temperatures for the 

highest Tb8 and Tb18. The difference must be less than 10K. 

If any of these SAF test is fail then the whole FOR is assigned as cloudy. Otherwise clear flag is 

assigned to whole FOR. SAF is followed by final and Individual FOV Flag (IFF). In IFF series of 

tests are applied to individual FOV of a given box. 

(d). Individual FOV Flag (IFF):  

Snow test: This test is daytime test and discriminates between snow and cloud. If visible 

reflectance of FOV is greater than the minimum reflectance (already defined in PAF) and skin 

temperature is greater than a threshold (275K) then FOV is cloudy otherwise clear. Threshold in 

this case can be adjusted to any value in the range of 273 to 285 K. 

Secondary stratus test: In this test difference of moisture corrected Tb7 and Tb8 is compared with 

a threshold.  The threshold depends on Tb7 and difference of skin temperature (Ts) and surface air 

temperature (Ta), both from forecast.  

Th2 = max[ NET(Ch7), 0.25*(Ta-Ts)], here Ts is calculated using 2 or 3 channels depending on 

daytime and nighttime situation. 

TPW=max(Tb8) – max(Tb7),    in 3x3 pixel FOR  

Tb7(corrected) = Tb7 + TPW 

Cirrus test: If the Tb5 of FOV under consideration is less than the value of noise corrected Tb5 

value corresponding to FOV having maximum Tb8 in the given FOR, then the test is said to be 

failed. 

Tb5(Noise corrected) = {Tb5 corresponding to max(Tb8)} - 7.0*NET(Ch#5) 

Final skin temperature test:  

[Tb8 + {Tb8 – Tb7}@max(Tb7)] < Ts, then test is assumed to be fail. 

If one FOV passes all the tests then that FOV is upgraded to clear. If FOV fails any of the tests then 

it is flagged as cloudy or partially cloudy depending on the SAF flag. 
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8.3.2. Clear-Sky Brightness Temperature computation 

The CSBT product at for pixel is computed as average of the clear-sky pixel brightness 

temperatures in the 3x3 FOR centered at the pixel location, if at least 3 clear pixels are found in 

the FOR. The averaging reduces the impact due to the uncertainty in cloud-detection algorithm as 

well as reduces the random noise of measurements (NET) over individual pixels. The land/sea 

flag as well as the clear fraction in the FOR is also computed. Fig.1 shows a sample of the INSAT-

3D sounder brightness temperatures and corresponding CSBT of each of the channels for 24 

November 2014 14:00 GMT. 
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Fig.1: INSAT-3D Sounder brightness temperatures (left panel) and corresponding Clear-Sky brightness 

temperatures (right panel) for Ch#4, 6, 8, 10, 12, 14, 16 (24-NOV-2014 14:00Z) 

8.4. Outputs 

Parameter Range Accuracy Resolution Format 
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8.5. Validation 

Clear-sky brightness temperature (CSBT) from INSAT-3D/3DR Sounder will be carried out using 

various analyses, such as NCMRWF, GFS, ECMWF analysis etc. These analyses will be used to 

generate brightness temperatures using PFAAST/RTTOV/CRTM radiative transfer models. The 

validation cannot be carried out for each half-hourly product but validation will be carried out for 

only synoptic hours.  

For validation at specific time-period special launch campaign will be carried out where high 

quality radiosondes are launched and these soundings would be used with radiative transfer model 

for CSBT validation.  

 Apart from this inter-satellite comparison will be carried out using CSBT products from 

hyperspectral sounder observation collocated with INSAT-3D/3DR Sounder and convolving with 

the SRFs. 

 

References: 

Schreiner  et al., (2001): J. Geophy. Res., vol 16 (D17), pp 20249-20363. 

 

 

  

Clear-Sky Brightness 

Temperature 

180-340 K 1-2K Spatial: 3 x 3 sounder pixel 

(0.3 x 0.3)  

Temporal: Hourly products 

HDF5 
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9. Cloud Top Pressure/Cloud Top Temperature and 
effective cloud amount from INSAT-3D/3DR IMAGER 

 

S. No. Product Name Spatial Resolution Temporal Resolution 

1 IMG_CTP 9 x 9 TIR pixels 

(~36 km x 36 km) 

30 minutes 
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9.1. Algorithm Configuration Information 

9.1.1. Algorithm Name 

Cloud Top Pressure/Cloud Top Temperature and effective cloud amount from INSAT-

3D/3DR IMAGER 

9.1.2. Algorithm Identifier       

ISRO_INSAT_IMG_CTP 

 9.1.3. Algorithm Specification 

 

 

9.2. Background 

The purpose of this document is to present an algorithm for retrieving Cloud properties such as 

cloud top temperature, cloud top pressure and effective cloud amount from two INSAT-3D thermal 

infrared window channels (10.5-11.5 m, and 11.5-12.5 m) and water vapor (6.7 m) channels. 

This document also describes the validation procedure. In this document some background and the 

methodology employed to derive the cloud top temperature/pressure and effective cloud amount is 

discussed. It mainly discusses the theoretical basis and practical aspects of the retrieval algorithm 

for cloud parameters from INSAT-3D imager channels and outlines the intended validation 

approach with validation results. 

The cloud properties such as cloud cover, cloud height etc. are very important for various climate 

and weather applications. The clouds at different heights affects weather and climate phenomenon 

in different ways. It is very difficult to imagine variety of weather phenomenon without clouds. 

Clouds do not only add beauty and variability in atmosphere but also cause the wide variety of 

atmospheric activities. Clouds vary in its appearance, extent, composition and physical properties, 

therefore, different clouds affect weather and climate differently. For example, rapidly growing 

cumulus clouds are precursor to sever thunderstorm, low water clouds with strong temperature 

inversion results in fog. Thin cirrus clouds do not play a critical role in short to medium range 

weather activities, but they play a very crucial role in earth’s heat budget and also helps in tracking 

upper level winds. Thin cirrus clouds are thin enough to allow incoming solar radiation to pass 

through it but doesn’t allow outgoing infrared radiation, thus increases the radiative energy and 

eventually leads to the warming of earth-atmosphere system.  

Cirrus clouds are crucially important to global radiative processes and the heat balance of the Earth; 

they allow solar heating while reducing infrared radiation to space. Models of climate changes will 
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have to correctly simulate these clouds to have the proper radiative terms for the Earth's heat 

budget. Past estimates of the variation of cloud cover and the Earth's outgoing longwave radiation 

have been derived primarily from the longwave infrared window (10-12 µm) radiances observed 

from polar orbiting and geostationary satellites (Rossow and Lacis, 1990; Gruber and Chen, 1988). 

The occurrence of semi-transparent clouds is often underestimated in these single channel 

approaches. Recently, multispectral techniques have been used to better detect cirrus in global 

(Wylie et al., 2005; Wu and Susskind, 1990) and North American (Wylie and Menzel, 1989) cloud 

studies. 

Additionally, clouds are very important to study weather phenomena at various spatial and temporal 

scales including its diurnal cycle. Diurnal cycle of various physical processes such as radiative 

exchange, precipitation, small and large-scale dynamics are of great importance and are greatly 

linked with clouds, therefore, underlines the study of diurnal cycles of clouds too. Ackerman and 

Cox (1981) had reported the diurnal oscillation of cloudiness in some tropical areas. These diurnal 

oscillations are part of dynamic-radiative feedback mechanism that operates on various spatial 

scales. (Foltz and Gray, 1979) 

9.3. Objective 

The main objective of this document is to provide the theoretical basis for deriving cloud top 

pressure/ cloud top temperature and effective cloud amount from INSAT-3D/3DR imager channels. 

The proposed algorithm will be applied to retrieve cloud properties from imager channels over 

each pixel defined as confidently cloudy from CMK product. The algorithm has no limitation based 

on geographical location, therefore, can be applied to generate products over full disk or sector 

products. 

9.4. Inputs 

9.4.1. Static Data 

Parameter Resolution Accuracy Source 

Land/sea flag ~2 km x 2 km  -- Global topographic 

datasets (Available) 

Surface Elevation Each Pixel 

10 km x 10 km 

-- Global topographic 

datasets (Available) 

Monthly mean spectral 

surface Emissivity 

Each Pixel 

10 km x 10 km 

-- Univ. of Wisconsin 

(Available) 

Global training dataset for 

ozone profile (Ozonesonde) 

Surface to 0.01 

hPa levels 

-- Univ. of Wisconsin/ IMD 

(Available) 
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9.4.2. Image and pre-processing data (dynamic) 

Parameter Resolution Quantization Accuracy Source 

Radiometric and geometric 

corrected gray count values 

of  split window IR channel 

(10.5-11.5 m and 11.5-

12.5 m) and WV channel 

(6.7 m) 

 

All the data is required in 

fixed lat-lon grid.  

pixel 10 bit -- Derived from raw 

data by DP (data 

processing) 

Gray value to brightness 

temperature conversion 

table 

- - 0.3 K Derived by DP 

Cloud Mask pixel   Operational L2 

product 

Geo-location file Pixel - 4 Km Derived by DP 

 

9.4.3. Other Auxiliary data and Model Inputs 

        Parameter Resolution Accuracy Source 

Numerical model forecast 

of humidity for all levels 

   

0.5 degree 

    <30% 

 

 

NCEP GFS 

All levels model forecast 

Temperature 

   

1o K 

9.5. Algorithm Functional Specifications 

9.5.1. Overview 

The cloud top pressure/temperature and cloud effective emissivity from INSAT-3D/3DR imager is 

intended to be retrieved at ~50 km nominal resolution. The cloud products are retrieved at coarser 

resolution than to resolution of actual INSAT-3D/3DR imager observations which are available at 

nominal resolution of ~4 km at nadir.  The averaging over a Field of Regard (FOR) of 9x9 pixels 

is used to enhance the signal to noise ratio over cloudy pixels. In general, noise over cloudy pixels 

is higher in comparison to clear pixels, therefore, it becomes essential to take average of observed 

radiances/brightness temperatures to reduce the noise for accurate estimation of cloud properties.   

For each 9x9 pixel box cloud top pressure, cloud top temperature and effective cloud amount is 

retrieved using Infrared window channel method or water vapor - window intercept method. 
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Generally, window method does not give accurate retrievals over semi-transparent thin high clouds, 

therefore, water vapor - window intercept method is used over those FOR.  

9.5.2. Infrared Window Channel (WIN) method 

In this method the height assignment using a single satellite channel is made by comparing either 

infrared window or water vapor brightness temperature (BT) values with NWP model forecast 

temperature profiles. However, for INSAT-3D/3DR Imager at present only Infrared window 

observations are used in this method. Cloud heights are determined by interpolating the cloud 

temperature, which is an average of coldest 20% of pixels, to the interpolated model guess field at 

the target location. A 6-h NWP model forecast from National Center for Environmental Prediction 

(NCEP) Global Forecast System (GFS) is the source of temperature profile. This method works 

well with opaque clouds.  

9.5.3. Water Vapor−Infrared Window Intercept Method (H2O)  

Cloud top pressure derived with this method are based on the fact that radiances from two different 

spectral bands are linearly related for different cloud amounts within the field of regard at a 

specified height. Observed radiance measurements are a function of clear sky and opaque cloud 

radiances.     

       cbcdcl PNnERNRnENR ,1                     (1) 

Opaque cloud radiance can be calculated from: 

       
dp

dp

pTNdb
PNtNRPNR

s

c

p

p

clcbcd

)(,
,,           (2) 

Where, bcdR  is the opaque ("black") cloud radiance, Rc1 is the clear sky radiance, t(N,p) is the 

fractional transmittance for radiation in spectral band N emitted from the atmospheric layer at 

pressure p arriving at the top of the atmosphere (p=0), n is the fraction of FOR covered with cloud, 

Ps is the surface pressure, Pc is the cloud top pressure, and b[N,T(p)] is the Planck radiance of the 

spectral band N for a temperature T(p). The second part of the above equation represents the 

radiance decrease from clear sky conditions introduced by an opaque cloud at a pressure level p. 

This calculation is dependent upon an "accurate" estimation of the current atmospheric temperature 

and moisture structure, which are provided by a NWP model forecast profile. By comparing the 

observed radiances with the calculated radiances (for an observed atmosphere defined by the model 

guess profiles), an estimation of the cloud height can be derived for a completely opaque cloud. In 

the Fig. 1, observed WV and IR radiances at each Field of Regard (FOR) are plotted with the 

calculated radiances at different heights for opaque clouds in the atmosphere (curved line). The 

straight line connects the center points of the warmest and coldest clusters, which approximates the 

observed surface and cloud conditions. 



                     INSAT-3D Incremental ATBD (MMDRPS), November 2018                   104 

 

           

Fig 1: Measured radiances (mW m−2 sr−1 cm) for fields of view partially filled with clouds (Nieman et al., 

1993) 

By extrapolating this line to intersect the calculated radiance curve, where the cloud amount is one 

(representing an opaque cloud), the cloud top temperature/pressure can be determined. The cluster 

determination algorithm used is a modified version of the bivariate asymmetric Gaussian histogram 

analysis (Rossow et al., 1985; Tomassini, 1981), and it involves ten steps. These steps are outlined 

in detail in Nieman et al. (1993) and Nieman et al. (1997). Calculated water vapor radiances can 

be in error due to incorrect NWP model forecast profiles. This error would lead to calculated 

radiances being systematically higher or lower than observed radiances. When the calculated 

radiances are systematically lower, an adjustment is applied to the radiances obtained using the 

above equation (2). When the calculated radiances are greater than observed radiances, no 

adjustment is applied since it is assumed that the lower measured radiance is due to cloud 

contamination. The accuracy of this method can be affected by the amount of water vapor in the 

atmosphere. Dry atmospheric conditions lead to a steeper slope between the IR and WV radiances, 

leading to an overestimate in the target height (lower pressure value). The NCEP GFS model 

forecast are used here as the guess fields. 

After retrieving the value of cloud top pressure effective cloud amount or effective emissivity is 

computed using eq (3) 

���� =
�(�)����(�)

�[�,�(��)]����(�)
                                                                                                 (3)  

where N is the fractional cloud cover within the FOV,  �� the effective cloud amount,  is the 

window channel wavenumber, and �[�, �(��)] , is the opaque cloud radiance corresponding to 

window channel frequency and ����(�) is the clear sky radiance corresponding to window channel. 
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9.5.4. Cloud top height and cloud top temperature from cloud top pressure 

The value of cloud top height, cloud top temperature for INSAT-3D/3DR Imager is derived 

corresponding to the retrieved cloud top pressure from INSAT-3D/3DR Imager. These values are 

again derived using the aforementioned NCEP forecast profiles. NCEP forecast fields contains the 

temperature and moisture profiles with pressure levels as its vertical coordinates. Geopotential 

height formulae is used to compute cloud height for given temperature profile. Geopotential height 

(GPH) is then given by 

ZR

ZR
GPH

o

o


  

 

Where Ro = 6356.766 km, the average radius of the earth. For given pressure, temperature and 

humidity profile from surface to 0.1 hPa, height of any pressure level or thickness of atmospheric 

layer from surface to a particular pressure level can be computed using the formula 

 

)ln(
P

P

g

TR
Z svd  

 

Ps – Surface Pressure, P – Given pressure where geopotential height is to be calculated, 

vT  - Layer mean virtual temperature. This can be computed at all the retrieved pressure levels. 

Virtual temperature Tv is given by TqTv )61.01(   where q is specific humidity expressed in 

Kg/Kg, T is temperature in K. 

 

9.5.5. Effective cloud amount 

Effective cloud amount N* for a given FOR is computed by using the eq (3) 

                         �∗ = ��������/����  

Where �∗  is the effective cloud amount for a given FOR,  ���� is the total number of cloudy pixels 
within a given FOR, ���� is the total number of pixels in a FOR and ���� is the effective cloud 

amount retrieved. For window channel method ���� = � 

9.5.6. Radiance bias adjustment 

 It is evident from the previous sections that cloud top properties retrieval algorithm is heavily 

dependent on quality of NCEP forecast fields and the fast forward RT model. If forward simulations 

are not in consonance with observations, then there will be error in the retrieved products. To make 

observations and forward model simulations consistent, a radiance bias adjustment is necessary 

step.  
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Radiance bias adjustment is carried out by using previous eight days of good quality matchup data 

of INSAT-3D/3DR Imager clear-sky observations and spatially and temporally collocated 

simulated INSAT-3D/3DR Imager radiances. The simulation is carried out by using NCEP GFS 

analysis and RTTOV radiative transfer model.  In this matchup data set INSAT-3D/3DR clear sky 

observations are average over 9x9 FOR and only those FOR are selected in which more than 90% 

pixels are clear. The radiance bias adjustment is done for land and ocean pixels separately. In 

addition to it, only those points are taken up for matchup data wherein satellite zenith angle is less 

than 300. An outlier rejection method is also applied before computing radiance bias adjustment 

factor in terms of slope and offset.  
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10. Cloud Top Pressure/Cloud Top Temperature from INSAT-
3D/3DR SOUNDER 

 

 

S. No. Product Name Spatial Resolution Temporal 

Resolution 

1 SND_CLDP 5 x 5 Sounder Pixels 

(~50 km x 50 km) 

1 hour 
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10.1. Algorithm Configuration Information 

10.1.1. Algorithm Name 

   Cloud Top Pressure/Cloud Top Temperature from INSAT-3D/3DR Sounder 

10.1.2. Algorithm Identifier 

ISRO_INSAT_SND_CLDP 

10.1.3. Algorithm Specification 

 

10.2. Introduction 

The purpose of this document is to present a conceptual framework and algorithm for retrieving 

cloud properties such as cloud top temperature, cloud top pressure and effective cloud amount 

from CO2 absorption and window channels of INSAT-3D/3DR sounder. This document also 

describes the validation procedure. In this document some background and the methodology 

employed to derive the cloud top temperature/pressure and effective cloud amount is discussed. It 

mainly discusses the theoretical basis and practical aspects of the retrieval algorithm for cloud 

parameters from INSAT-3D/3DR sounder channels and outlines the intended validation approach 

with validation results. 

10.2.1. Overview and background 

The cloud properties such as cloud cover, cloud height etc. are very important for various climate 

and weather applications. The clouds at different heights affects weather and climate phenomenon 

in different ways.  

10.2.2. Objective 

The main objective of this document is to provide the theoretical basis for deriving cloud top 

pressure/ cloud top temperature and effective cloud amount from INSAT-3D/3DR sounder 

channels. The proposed algorithm will be applied to retrieve cloud properties from sounder 

channels over a Field of Regard (FOR) of 5x5 sounder pixels defined as confidently cloudy from 

sounder cloud mask output. The algorithm has no limitation based on geographical location, 

therefore, can be applied to generate products at any geographical location. 
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10.3. Inputs 

10.3.1. Static Data 

Parameter Resolution Accuracy Source 

Land/sea flag ~2 km x 2 km  -- Global topographic data  

Surface Elevation 10 km x 10 km -- Global topographic data 

Monthly mean spectral surface 

Emissivity 

10 km x 10 km -- Univ. of Wisconsin 

10.3.2. Sounder data (dynamic) 

10.3.3. Other Auxiliary data and Model Inputs 

In addition to Sounder data, numerical model forecast and surface observations of temperature and 

humidity are required to improve the retrieval accuracy. 

Parameter Resolution Accuracy Source 

Forecast temperature and humidity 

profiles valid at observation time 

0.5 x 0.5 

at model 

pressure levels 

-- NCEP and/or 

IMD/NCMRWF 

Forecast surface pressure and 

surface skin temperature valid at 

observation time  

 

0.5 x 0.5 

-- NCEP and/or 

IMD/NCMRWF 

Observed surface pressure, surface 

air temperature and humidity 

AWS locations -- IMDs Automatic 

Weather Station 

(AWS) 

 

Parameter Resolution Accuracy Source 

Radiometric and Geometric 

corrected gray count values of 

sounder channels #1-19 

Each Pixel -- Derived from raw data by 

DP 

Geolocation information each pixel 1 pixel Derived by DP 

Calibration Coefficients to convert 

gray values to radiances/Tb 

- - Derived by DP 

Brightness temperature quality flag 

for sounder channels 

each pixel - Derived by DP 
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10.4. Algorithm Functional Specifications 

It is very difficult to imagine variety of weather phenomenon without clouds. Clouds do not only 

add beauty and variability in atmosphere but also cause the wide variety of atmospheric activities. 

Clouds very in its appearance, extent, composition and physical properties, therefore, different 

clouds affect weather and climate differently. For example, rapidly growing cumulus clouds are 

precursor to sever thunderstorm, low water clouds with strong temperature inversion results in fog. 

Thin cirrus clouds are not very exciting clouds from short to medium range weather activities but 

play a very crucial role in earth’s heat budget and also helps in tracking upper level winds. Thin 

cirrus clouds are thin enough to allow incoming solar radiation to pass through it but doesn’t allow 

outgoing infrared radiation thus increase the radiative energy and eventually leads to the warming 

of earth-atmosphere system.  

Cirrus clouds are crucially important to global radiative processes and the heat balance of the 

Earth; they allow solar heating while reducing infrared radiation to space. Models of climate 

changes will have to correctly simulate these clouds to have the proper radiative terms for the 

Earth's heat budget. Past estimates of the variation of cloud cover and the Earth's outgoing 

longwave radiation have been derived primarily from the longwave infrared window (10-12 m) 

radiances observed from polar orbiting and geostationary satellites (Rossow and Lacis, 1990; 

Gruber and Chen, 1988). The occurrence of semi-transparent clouds is often underestimated in 

these single channel approaches. Recently, multispectral techniques have been used to better detect 

cirrus in global (Wylie et al., 2005; Wu and Susskind, 1990) and North American (Wylie and 

Menzel, 1989) cloud studies. 

Clouds are very important to study at various spatial and temporal scale including its diurnal cycle. 

Diurnal cycle of various physical processes such as radiative exchange, precipitation, small and 

large-scale dynamics are of great importance and are greatly linked with clouds, therefore, 

underlines the study of diurnal cycles of clouds too. Ackerman and Cox (1981) had reported the 

diurnal oscillation of cloudiness in some tropical areas. These diurnal oscillations are part of 

dynamic-radiative feedback mechanism that operates on various spatial scales (Foltz and Gray, 

1979).     

The cloud top pressure/temperature and cloud effective emissivity from INSAT-3D/3DR sounder 

is intended to be retrieved at ~50 km nominal resolution. The cloud products are retrieved at 

coarser resolution than to resolution of actual INSAT-3D/3DR sounder observations which are 

available at nominal resolution of ~10 km at nadir.  The averaging of 5x5 pixels will enhance the 

signal to noise ratio over cloudy pixels. In general, noise over cloudy pixels is higher in comparison 

to clear pixels, therefore, it becomes essential to take average of observed radiances/brightness 

temperatures to reduce the noise for accurate estimation of cloud properties.   

Cloud properties from INSAT-3D/3DR sounder observations are very important parameters to 

study diurnal, seasonal or annual variations in cloud cover as these parameters are available at high 

temporal resolution at the same geographical location. These parameters could also help in 
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segregating semi-transparent transmissive clouds (partially transparent to terrestrial radiation) 

opaque clouds in the analysis of cloud cover (Wylie and Menzel, 1989). Similar kind of studies 

are already carried out by Wylie et al. (1994) using NOAA-HIRS observations.  

10.5. Algorithm Theoretical Description 

This section presents the theoretical basis of the algorithm and practical considerations.   Retrieval 

of cloud products (CTP, CTT and effective cloud amount) is a combination of two methods: 

Window channel method and CO2 slicing method. Both of these methods require forecast fields of 

temperature and moisture. The CO2 slicing method requires the use of radiative transfer model.   

In this section physics of deriving cloud height and effective cloud amount from INSAT-3D/3DR 

sounder observations is discussed. This sections presents the conceptual framework of retrieval 

algorithm.  

10.6. Physical Basis of the Cloud Top Pressure/Temperature/Height 
Algorithm 

10.6.1. CO2 Slicing: Mid- to High-Level Clouds 

The assumptions made for the application of the CO2 -slicing algorithm are (Menzel et al., 1992):  

(i) the emissivity of the cloud is the same in all channels used,  

(ii) clouds occur as a single cloud layer,  

(iii) lower cloud layers are ignored, and  

(iv) the surface temperature and the temperature structure of the atmosphere and its 

transmittance at the used wavelengths are known. 

Retrieval of cloud top pressure and effective cloud amount (i.e., cloud fraction multiplied by cloud 

emittance) are performed using radiances measured in those spectral bands that are located within 

the broad 15 m CO2 absorption region. The CO2 slicing technique makes use of combination of 

15 m CO2 absorption channels that have different opacity, therefore, sensing different layer of 

atmosphere. This helps in assigning height of clouds. The channels of INSAT-3D/3DR used in the 

cloud top pressure and amount algorithm are described in Table 1. 
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Table 1: Channel characteristics of INSAT-3D used in cloud top properties retrieval 

INSAT-3D 

Channel 

number 

INSAT-3D Channel characteristics  Principal 

Absorbing 

gas 

Approximate peak in 

weighting function 
Central 

wavelength 

(wavenumber) 

Bandwidth  

µm (cm-1) 

8 10.99 (910) 0.611 (51) Window Surface 

7 11.98 (834) 0.768 (53) Water Vapor Surface 

5 13.33 (750) 0.352 (20) CO2 Low level atmosphere 

4 13.64 (733) 0.351 (19) CO2 Mid-level atmosphere 

3 14.03 (713) 0.321 (16) CO2 Upper level atmosphere 

2 14.31 (699) 0.305 (15) CO2 Tropopause level 

 

The CO2 slicing method is a well-established method and is extensively used for deriving cloud 

properties from a wide range of GEO and LEO satellite observations. Keeping this fact in mind 

the latest series of GOES-12/13/14 had a CO2 channel instead of the split window thermal IR 

channel. This method is used for deriving cloud top pressure and temperatures from VISSR 

Atmospheric Sounder (VAS) (Menzel and Strabala 1989; Menzel et. al 1992) observations, High 

resolution Infrared Radiometer Sounder (HIRS) (Wylie and Menzel 1999) observations, 

MODerate resolution Imaging Spectroradiometer (MODIS) (Plantick et al. 2003; Menzel et al.  

2008) radiances and the Geostationary Operational Environmental Satellite (GOES) sounder 

(Menzel et al. 1992; Menzel and Purdom 1994) observations. Several sensitivity studies such as 

Menzel et al. (1992) and Baum and Wielicki (1994) have already been carried out to quantify errors 

arising from different sources.  

The CO2 slicing technique can be understood by calculating the radiances using radiative transfer 

models in an atmosphere with a single cloud layer. For a given cloud element in a field of view 

(FOV), i.e. a single sounder pixel, the radiance observed, R(), in spectral band , can be written 

as: 

�(�) = ����� + (1 − �)����                                                 ------------------- (1) 

Where �(�) is observed radiance in band , N is the fractional cloud coverage, ���� is radiance 

from clear portion and ���� is radiance from the cloud covered portion. 

Cloud covered radiance can be written as: 

���� = ���� + (1 − �)����                                                    ------------------- (2) 

Where � is the emissivity of cloud and ��� is radiance from the opaque cloud.  
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By combining Eq (1) and Eq (2) we get:  

�(�) = (1 − ��)����(�) + �����(�)                            ------------------- (3) 

Now from radiative transfer equation ���� and ���� are given as:  

���� = �(��)�(��) − ∫ �(�, �)
��[�,�(�)]

��

��

�
��                 ------------------- (4) 

���� = �(��)�(��) − ∫ �(�, �)
��[�,�(�)]

��

��

�
��                 ------------------- (5) 

Where ��  is the surface pressure, �� is pressure corresponding to the top of single level cloud, 

�(�, �) is the top of the atmosphere (p = 0) transmittance of radiation of spectral band  emitted 

from the atmospheric level at pressure p, and �[�, �(�)] is the Planck radiance for spectral band 

for temperature T at pressure level p. Thus first terms of Eq (4) and (5) represents the contribution 

to radiance from the surface term (which is cloud top in Eq (4) and surface in Eq(5)), whereas, the 

second term represents the absorption of radiation by atmosphere above the surface or cloud top. 

These equations neglect the scattering by clouds or atmosphere which is very valid assumptions 

for clear atmosphere and opaque clouds at the desired sounder spectral bands.  

Now expanding above equations by integrating by parts and solving we get: 

���(�, ��) = ����(�) − ∫ �(�, �)
��[�,�(�)]

��

��

��
��                        ------------------- (6) 

Now by substituting Eq (6) in Eq (3) we get: 

�(�) − ����(�) = �� ∫ �(�, �)
��[�,�(�)]

��

��

��
��                           ------------------- (7) 

This is the basic equation used in CO2 slicing method. It is evident from the Eq (7) that with the 

help of a-priori information of  ����(�) and �(�, �), value of �� that is cloud top pressure could be 

inferred. However, even with this a-priori information, there are two unknowns (�� and ��) in Eq 

(7). To solve this problem, the ratio of Eq (7) for two observations made in nearby spectral bands 

is taken. Thus radiance ratios between two spectral bands in similar frequencies (Chahine, 1974; 

Smith and Platt, 1978) gives the information of cloud top pressure.     

The ratio of the deviations in observed radiances, R() to their corresponding clear-sky radiances, 

����(�) for two spectral bands of frequency �� and �� viewing the same FOV is written as 

�(��)�����(��)

�(��)�����(��)
=

��� ∫ �(��,�)
��[��,�(�)]

��

��
��

��

��� ∫ �(��,�)
��[��,�(�)]

��

��
��

��
                              ------------------- (8) 

As it is already stated that channels with wavenumber (or wavelength) that are very similar in  

wavenumber (wavelength) are taken to satisfy the assumption that cloud emissivities in both 

channels are same that is ��  is approximately equal to ��. With this assumption we are left with 

only one unknown in Eq (8) and that can be easily estimated. 

After retrieving the value of cloud top pressure using a-priori information of  ����(�) and �(�, �) 

in eq (8), effective cloud amount or effective emissivity is computed using eq (9) 
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�� =
�(�)�����(�)

�[�,�(��)]�����(�)
                                                       ------------------- (9)  

where N is the fractional cloud cover within the FOV,  �� the effective cloud amount,  is the 

window channel wavenumber, and �[�, �(��)] , is the opaque cloud radiance corresponding to 

window channel frequency and ����(�) is the clear sky radiance corresponding to window channel. 

It is evident from the equation (9) that effective cloud amount or effective cloud emissivity is 

multiplication of N (fractional cloud cover within the FOV) and  (Cloud emissivity), therefore, 

effective cloud amount can be less than 1 because of:  

broken cloud (N<1, =1) has filled the FOV 

overcast transmissive cloud (N=1, <1) 

broken transmissive cloud (N<1, <1) 

Therefore, it is difficult to quantify exactly the emissivity of clouds using the effective cloud 

amounts from approximately 50 km x 50 km INSAT-3D/3DR sounder products.  

The cloud top products from CO2 slicing technique are matched with other methods to filter out 

any other clouds that are not upper level clouds. Upper level clouds are flagged by using the 

combination of highly absorbing channels (such as water vapor absorption channel in 6.7 µm or 

CO2 absorption channel in 15 µm band) and channels with less absorption. In general, the 

brightness temperatures in strong absorption channels are much cooler than the brightness 

temperatures (BT) in weak absorption channels for clear atmospheric condition or low level 

clouds. Contrary to this, for high level clouds BT in strong absorption channel is warmer than the 

weak absorption channels (Soden and Bretherton, 1993; Schmetz et al., 1997). Appropriate 

thresholds were taken to identify the high level clouds in INSAT-3D/3DR cloud top retrieval 

algorithm. In present algorithm 14.03 µm (channel 3) and 13.33 µm (channel 5) of INSAT-3D/3DR 

sounder are used for this purpose. If BT of ch#3 is greater than the BT of ch#5 by a given threshold, 

then the cloud is assumed to be high cloud and cloud top pressure from CO2 slicing method is 

retained.  

Equation (8) is used to retrieve cloud top pressure for a 5 x 5 FOR. The left side of Equation (8) 

contains the terms for observed radiances as well as clear radiances. The value of observed 

radiances is calculated by taking the average of cloudy pixels within 5x5 FOR. Cloud top 

computation is carried out only if 16 or more cloudy pixels are found within 5x5 box. Computation 

of clear sky radiances and transmittances is carried out using a fast forward radiative transfer model 

called RTTOV (Eyre 1991; Saunders et al. 1999; Matricardi et al 2001) developed at European 

Center for Medium Range Weather Forecasting (ECMWF). RTTOV uses the Pressure Layer 

Optical Depth algorithm (Hannon et al 1996). This model is very flexible and can take any number 

of pressure levels for forward model computation, however, internally it interpolates atmospheric 

profiles to fixed 43 pressure levels ranging from 1013 to 0.1 hPa. This interpolation is done because 

fast forward coefficients for INSAT-3D/3DR sounder SRFs are derived on given 43 pressure 
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levels. The forward calculations from RTTOV takes satellite zenith angle, absorption by well-

mixed gases (including nitrogen, oxygen, and carbon dioxide), water vapor (including the water 

vapor continuum), and ozone into account. The forecast field from NCEP containing temperature, 

moisture profiles, surface air temperature, skin temperature etc. are used to simulate clear sky 

transmittances and radiances. 

The right hand side of Equation (8) uses aforementioned transmittance profiles. Integration is 

carried out by using trapzoidal method wherein integration limit is bounded by surface pressure 

and tropopause pressure level.    

For the retrieval of cloud top pressure from INSAT-3D/3DR sounder a “top-down” approach, 

similar to MODIS cloud top pressure retrieval method is followed. In this approach pair of two 

channels are selected based on their decreasing opacity. If retrieval of cloud top pressure is 

successful for a given pair, then there will no need for applying eq (8) for other pair of channels 

which are relatively less opaque. For INSAT-3D/3DR sounder first pair of ch#2 and ch#3 are taken 

which are considered to be the most opaque channels for CO2 slicing method. If eq (8) 

appropriately converges for this pair, then retrieval is considered to be successful, otherwise the 

same procedure is repeated with pairs of (ch#3, ch#4) or (ch#4, ch#5). If none of these pairs are 

able to give value of cloud top pressure, then window channel method is used for retrieval of cloud 

top pressure.   

10.6.2. Window Channel method for cloud top pressure for low to mid clouds 

In this method the cloud top pressure is carried out by comparing infrared window channel 

brightness temperature (BT) values with NWP model forecast temperature profiles. A 6-h NWP 

model forecast from National Center for Environmental Prediction (NCEP) Global Forecast 

System (GFS) is the source of temperature profile (GFS; Derber et al. 1991). This method assumes 

that clouds are overcast and non-transmissive (=1). Generally, cloud top temperatures/pressure 

of low level overcast clouds are determined by using window channel method. In addition to it, 

wherein, cloud top pressure is not determined by CO2 slicing method, window channel method is 

used to retrieve cloud top properties for those pixels too. In this method cloud top pressure is 

determined by interpolating the cloud temperature, which is an average of BT cloudy pixels in 5x5 

FOR, to the interpolated model guess field at the target location. The cloud emissivity is assumed 

to be unity and N=Nc/25. 

Finally, all cloudy FORs are assigned a cloud top pressure either by CO2 slicing or infrared window 

technique. 

10.7. Cloud top height and cloud top temperature from cloud top pressure 

The value of cloud top height and cloud top temperature for INSAT-3D/3DR sounder are derived 

corresponding to the retrieved cloud top pressure from INSAT-3D/3DR sounder. These values are 

again derived using the aforementioned NCEP forecast profiles. NCEP forecast fields contains the 

temperature and moisture profiles with pressure levels as its vertical coordinates. Geopotential 
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height formulae is used to compute cloud height for given temperature profile. Geopotential height 

(GPH) is then given by  

ZR

ZR
GPH

o

o


       ---------- (10) 

Where Ro = 6356.766 km, the average radius of the earth. For given pressure, temperature and 

humidity profile from surface to 0.1 hPa, height of any pressure level or thickness of atmospheric 

layer from surface to a particular pressure level can be computed using the formula 

)ln(
P

P

g

TR
Z svd       --------- (11) 

Ps – Surface Pressure, P – Given pressure where geopotential height is to be calculated, 
vT  - Layer 

mean virtual temperature. This can be computed at all the retrieved pressure levels. 

Virtual temperature Tv is given by TqTv )61.01(   where q is specific humidity expressed in 

Kg/Kg, T is temperature in K. 

10.8. Radiance bias adjustment 

It is evident from the previous sections that cloud top properties retrieval algorithm is heavily 

dependent on quality of NCEP forecast fields and fast forward RT model. If forward simulations 

are not in consonance with observations, then there will be error in retrieved products. To make 

observations and forward model simulations consistent, radiance bias adjustment is a necessary 

step.  

Radiance bias adjustment is carried out by previous eight days of good quality matchup data of 

INSAT-3D/3DR sounder clear-sky sounder observations and spatially and temporally collocated 

simulated INSAT-3D/3DR sounder radiances. The simulation is carried out by using NCEP GFS 

analysis and RTTOV radiative transfer model.  In this matchup data set INSAT-3D/3DR clear sky 

observations are average over 5x5 FOR and only those FOR are selected in which more than 90% 

pixels are clear. The radiance bias adjustment is done for land and ocean pixels separately. In 

addition to it, only those points are taken up for matchup data wherein satellite zenith angle is less 

than 300. An outlier rejection method is also applied before computing radiance bias adjustment 

factor in terms of slope and offset.    
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11.  INSAT-3D Cloud Microphysical Product 
 

S. No. Product Name Spatial Resolution Temporal Resolution 

1 IMG_CMP 4 km x 4 km 30 minutes 
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11.1. Algorithm configuration information 

11.1.1. Algorithm name:  

INSAT-3D/3DR Cloud Microphysical Product (CMP)  

11.1.2. Algorithm Identifier:  

INSAT_3D_CMP 

11.1.3. Algorithm Specification 

Version Date Prepared by Description 

1.0 

1.1 

1.2 

1.3 

1.31 

14.12.2015 

27.11.2016 

01-08-2018 

29-08-2018 

14-09-2019 

 

Bipasha Paul Shukla, 

 Jinya John 

 

Cloud Microphysical 

parameter retrieval Baseline 

Document 

 

11.2. Introduction 

In this document, we offer some background to the cloud microphysics retrieval over oceans using 

INSAT-3D imager data, describe the theoretical basis of the cloud microphysics retrieval 

algorithm, discuss inputs required, output deliverables and the practical aspects of the algorithm 

implementation, the technical issues and the future scope. 

11.3. Overview and Background 

Clouds are suspension of tiny water droplets or ice crystals. They are of varying sizes and shapes. 

They can be of water, ice or mixed phase. The size of cloud droplets is of the order of 10 µm. 

Clouds strongly modulate the Earths energy balance and its atmosphere through their interaction 

with the solar and terrestrial radiation (Roebeling et al., 2005). Their impact on the radiation budget 

can result in a heating or cooling of the planet, depending on the radiative properties of the cloud 

and their altitude (Stephens et al., 1981). The radiative properties of the clouds depend upon the 

various cloud microphysical parameters which includes optical depth, effective particle radius, 

thermodynamic phase etc. Clouds interact with radiation in many ways like scattering, emission, 

absorption and this interaction is sensitive towards each of the microphysical parameters. The 

temporal monitoring  of cloud-top microphysics is of  extreme importance in the precipitation 

development processes. The retrieval of cloud microphysical properties like effective radius, 

optical depth, thermodynamic phase etc. from INSAT 3D has been made possible due to the 

inclusion of 1.6�m channel in INSAT 3D imager.  This is a major enhancement as compared to 

the derivation of only the cloud top temperature from Kalpana VHRR.  Earlier studies show that 
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the simulation of convective systems is very sensitive to the parameterization of cloud 

microphysics. Thus retrieval of the microphysical parameters from INSAT 3D aids in monitoring 

and accurate prediction of convective weather events. The cloud-microphysical parameters at high 

temporal resolution will  be very helpful in tracking the evolution of local  as well as mesoscale 

systems.  

The sensitivity of different microphysical parameters to different regions of electromagnetic 

spectrum can be studied with the help of a radiative transfer (RT) model.  A Radiative transfer 

model (RTM) computes the radiative transfer of the electromagnetic radiation through the 

atmosphere. The retrieval of cloud microphysical properties is done with the help of an RT model 

using the imager channels of INSAT-3D. The INSAT-3D channels which may be used for cloud 

properties retrieval includes Visible (0.65µm) and Shortwave Infrared (SWIR-1.66µm). The 

importance of retrieving the optical thickness and effective radius derives not only from the fact 

that such a retrieval is possible, but from the fact that shortwave cloud radiative properties depend 

almost exclusively on these two parameters. 

11.4. Objective 

The main objective of this document is to provide step wise algorithm, inputs and outputs as 

expected from the INSAT-3D cloud microphysical product. This document will form the basis of 

operational implementation of the algorithm. 

11.5. Inputs 

Inputs to the algorithm will include geo-referenced, corrected Albedo, Digital counts for Visible 

channel and SWIR along with satellite viewing geometry (solar zenith angle, satellite zenith angle, 

azimuth angle).  

11.5.1. Static data 

 This will consist of the Look-up Table (LUT) which is generated using a RT model and stored. A 

random dataset of cloud microphysical parameters with solar geometry is also stored as static file. 

These files will be required by the inversion model. 

11.5.2. Dynamic data 

The following table gives a list of inputs required for algorithm input and calibration: 
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Table 3: IMAGE AND CALIBRATION INPUTS 

Parameter Resolution Quantization 

Radiometric and geometric 

corrected gray count values 

of VIS channel (0.65) 

4 Km (at present) 

1 Km (Testing TBD) 
10 bit 

Radiometric and geometric 

corrected gray count values 

of SWIR channel (1.66) 

4 Km (at present) 

1 Km (Testing TBD) 
10 bit 

Gray value to albedo (VIS and 

SWIR) conversion table 
- - 

Geolocation file 
4 Km (at present) 

1 Km (Testing TBD) 
- 

11.5.3. Other Auxillary data and Model Inputs 

Table 4: AUXILARY DATA 

Parameter Resolution 

Solar Zenith Angle 
4 Km (at present) 

1 Km (Testing TBD) 

Satellite Zenith Angle 
4 Km (at present) 

1 Km (Testing TBD) 

Satellite Azimuth angle pixel 

 

11.6. Algorithm Functional Specifications 

 In this section we describe the theoretical basis and algorithm overview for deriving cloud 

microphysical parameters using INSAT-3D channels. 

11.6.1. Overview 

The underlying principle on which the retrieval of these microphysical parameters is based is the 

fact that the reflection function of clouds in the visible band is primarily a function of the cloud 

optical thickness, whereas the reflection function at a water (or ice) absorbing band in the 

shortwave infrared (SWIR) is primarily a function of cloud particle size. 

11.6.2. Theoretical Background 

The visible (0.7µm) channel is a non-absorbing channel; the reflectance depends only upon the 

cloud optical depth. Hence, there is a very significant difference between the radiances of very 

thick clouds and thin clouds in the visible spectrum. The radiance values are higher for very thick 

clouds as compared to thin clouds. This kind of behaviour indicates a pronounced effect of optical 

depth on the visible portion of the spectrum. For the SWIR bands, the droplet absorption increases 
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approximately linearly with effective radius, and hence the asymptotic reflectance of a cloud 

decreases with increasing particle size. Thus the visible band contains information primarily 

regarding cloud optical thickness, whereas the absorbing bands eventually reach an optical 

thickness where they are primarily dependent on particle size alone. A combination of visible and 

shortwave-infrared absorbing bands therefore provides information on both optical thickness and 

effective radius. 

11.6.3. Algorithm Overview 

To retrieve the cloud optical thickness (τc) and effective particle radius (re), a radiative transfer 

model was first used to compute the reflected intensity field. The values of the reflection function 

were stored for different combinations of cloud optical thickness and particle size at three 

geometrical angles in the form of a look-up-table. The determination of optical thickness and cloud 

effective radius from spectral reflectance measurements constitutes the inverse problem. This has 

been solved by comparing the measured reflectances of INSAT-3D visible and SWIR channels 

with entries in the lookup table (LUT) and searching for the combination of τc and re that gives the 

best fit. 

In the present case, we have used SBDART (Santa Barbara DISORT Atmospheric Radiative 

transfer) radiative transfer model for computing the LUT. SBADART computes plane parallel 

radiative transfer in clear and homogeneous cloudy conditions within the Earth’s atmosphere for 

the region from 0-50,000 ���� (Ricchiazzi et al.,1998). SBDART can compute the radiative 

effects of several lower and upper atmosphere aerosol types. The radiative transfer equation is 

numerically integrated with DISORT. This module was designed to treat the plane parallel 

radiative transfer. The discrete ordinate method provides a stable algorithm to calculate the plane 

parallel radiative transfer equation in vertically inhomogeneous atmosphere. SBDART contains 

pre-computed scattering parameters for the effective radii in the 2-128μm range. In order to 

compute the radiative transfer through the cirrus clouds, it also includes scattering parameters of 

spherical ice grains for single size distribution.  SBDART computes intensity of scattered and 

thermally emitted radiation at different heights. It allows up to 50 atmospheric layers and 20 

radiation streams. 

The determination of cloud optical depth and cloud effective radius from spectral reflectance 

measurements constitutes the inverse problem and is typically solved by comparing the measured 

reflectances with entries in a lookup table and searching for the combination of τc and re that gives 

the best fit (Twomey and Cocks 1982, 1989). 
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11.6.4. Flow Chart 

 

Figure 1: Flow diagram for cloud microphysical parameter retrieval 

 

11.7. Operational retrieval implementation 

The operational implementation of the retrieval process can be enumerated as follows: 

a) Generation of random values within range of solar zenith angle (SZA), cloud optical depth, 

cloud effective radius 

b) Running of RT model for the random vectors  and  range of satellite zenith (satzen) and 

azimuth angles (satazi)  to generate LUT for visible and swir channel 

c) The input random vectors and corresponding LUT is stored. 

d) Steps (1-3) are offline processes. 

e) In online algo,  pixel wise value of swir  radiance , vis radiance,  SZA, satzen, satazi are 

taken as input. Using land-sea mask, only oceanic geo-type pixels are chosen. 

f) A triple vector search is performed  in input fields of LUT to find closest sun –satellite 

geometry. 

g) The corresponding  simulated radiances in  visible and swir channels is compared with 

observed radiance from INSAT-3D for cloudy pixels  to get the best match, and 

corresponding values of COD and CER are assigned to that pixel. 
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11.8. Output (over Ocean) 

Parameter Unit Accuracy Resolution 

Cloud Optical Depth None TBD Pixel 

Cloud Effective Radius m TBD pixel 

 

11.9. Initial Validation 

The initial validation by comparing with MODIS is given in the table below 

 

 

 

Figure 2(a) INSAT-3D Cloud Effective Radius 
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Figure 2(b)  INSAT-3D Cloud Optical Thickness 

11.10. Limitations 

 Only daytime detection is possible. 

 Multi-level clouds can be a major source of error. 

 In case of thin clouds or highly inhomogeneous clouds , there may be inaccuracy. 

 Other sources of errors will include cloud water vapour absorption, inaccuracy in cloud top 

height assumptions, drizzle in cloud.  

11.11. Future work 

 To test the current algorithm for 1-km resolution sector VIS-SWIR radiance product 

(currently not operational). 

 With support from IMD, NCMRWF, validation will also be carried from in-situ, aircraft 

campaigns and earlier campaign data from IITM. However, issues arising out of the 

dynamic nature of clouds and their sampling from different platforms can result in non-

converging results. 
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12. 5-Day Composite Atmospheric Motion Vectors (AMV) 
 

     

S. No. Product Name Spatial Resolution Temporal Resolution 

1 IMG_AMV5 Tracer size : 1 x 1 5-day 
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12.1. Algorithm Configuration Information 

12.1.1. Algorithm Name 

5-Day Composite Atmospheric Motion Vectors (AMV)    

12.1.2. Algorithm Identifier 

ISRO_INSAT_PRO_AMV_COM_A001 

12.1.3. Algorithm Specification 

Version Date Prepared by Description 

1.0 

 

26.06.2018 S. K. Deb, and 

C.M. Kishtawal 

 

5-DAY AMV composite Maps  

5-DAY AMV Composite Maps 

At following layers: 

1. High-Level (100-400 hPa) 

2. Mid-Level (401-700 hPa) 

3. Low-Level (701-950 hPa) 

 

12.2.  Introduction 

The purpose of this document is to present the methodology for deriving 5-day composite maps 

using Atmospheric Motion Vectors (AMVs) from INSAT-3D/3DR at different broad atmospheric 

levels. The out of six imager channels in INSAT-3D/3DR, AMVs are derived using four channels 

and they are: i) Visible (VIS) covering [0.55 – 0.75 µm], ii) Mid-wave Infrared (MIR) covering 

[3.8 – 4.0µm], iii) Water Vapor (WV) covering [6.5 – 7.1 µm] and iv) Thermal Infrared (TIR1) 

covering [10.2 – 11.3 µm] ranges of spectrum respectively. In this document some background 

and general characteristic of different AMV-derived products; the methodology employed to 

derive the 5-day composite maps are presented.  

12.3. Overview and background 

The Atmospheric Motion Vectors (AMVs) derived by considering the movement of cloud and 

water vapour tracers in successive images of geostationary satellites (Nieman et al., 1997; Velden 

et al., 1997; Schmetz et al., 1993; Kishtawal et al. 2009) are considered as one of the most reliable 

source of wind information with higher spatial-temporal coverage over the ocean as well as land 

regions.The AMVs is one of the important inputs to the global and regional assimilation systems 

for the improvement of Numerical Weather Prediction (NWP). The role of AMVs is particularly 

significant over the oceans and high latitudes where in-situ observations are scarce. The vertical 

coverage of AMVs spreads through high to low-levels as per the channel used during retrieval viz. 

AMV retrieved using: i) infrared channel data covers entire ranges of atmosphere i.e. from 100-

950 hPa, ii) water vapour channel data covers only high-level i.e. from 100-500 hPa, while iii) 

visible and mid-infrared channel data covers low-levels i.e. from 600-950 hPa respectively. 5-Day 
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composite winds maps derived using the retrieved AMVs in three broad atmospheric levels are 

very useful for monitoring of monsoon flows over Indian region. The following Fig-1 shows an 

example of weekly low-level monsoon flow for the weeks viz. 01-07 July 2017 and 08-14 July 

2017 respectively. 

Figure-1: Low-level (701 - 950 hPa) weekly monsoon flow derived using visible AMVs for the 

weeks 01-07 July 2017 and 08-14 July 2017 respectively. 

This type of 5-day composite wind map derived from AMVs can be used to monitor the progress 

of monsoon on operational basis.  

12.4. Objective 

The main objective of this study is to discuss the procedure for deriving the 5-day composite wind 

maps  derived using atmospheric motion vectors (AMVs) retrieved from INSAT-3D/3DR over 

land and sea at every half-hour interval. The region over which these products will be retrieved is 

same as the domain where AMVs are retrieved i.e. in the region 30-130E, 50S-50N.  
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12.5. Inputs 

12.5.1. Retrieved AMVs (Dynamic) 

Parameter Resolution Accuracy 

AMV retrieved from TIR1 

channel of INSAT-3D/3DR 

Spatial: 120km x 120km 

Temporal: 30 Minutes 

5 to 6 m/s 

(high/mid levels) 

1 to 4 m/s (low-levels) 

AMV retrieved from WV 

channel of INSAT-3D/3DR 

Spatial: 120km x 120km 

Temporal: 30 Minutes 

6 to 5 m/s 

(in high level) 

AMV retrieved from VIS 

channel of INSAT-3D/3DR 

Spatial: 120km x 120km 

Temporal: 30 Minutes 

2.5 to 3 m/s 

(in low-levels) 

AMV retrieved from MIR 

channel of INSAT-3D/3DR 

Spatial: 120km x 120km 

Temporal: 30 Minutes 

3 to 4 m/s 

(in low-levels) 

 

12.6. Algorithm Functional Specifications 

12.6.1. Methodology 

To compute 5-day composite of AMV maps for three broad atmospheric levels (high, mid and low-

levels), retrieved scattered AMVs, available at 30-minutes interval, are gridded into 0.5 degree x 

0.5 degree horizontal resolution covering the ares 0E-130E, 50S-50N and by taking 50 hPa vertical 

difference. The vertical pressure levels considered in this case are: 100, 150, 200, 250, 300, 350, 

400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950 hPa respectively. Where-ever AMV is 

not available an undefined value of -999 are assigned to the grid point. Once gridded AMV at 

every 30-minute interval is generated, 5-day composite maps are generated by taking average of 

all available AMVs for a particular grid point.  

i) High-level Map: Gridded AMVs available in the levels 100 hPa to 400 hPa are averaged for 

5-Day to generate 5-Day composite High-level Map. 

ii) Mid-level Map: Gridded AMVs available in the levels 401 hPa to 700 hPa are averaged for 

5-Day to generate 5-Day composite mid-level Map. 

iii) Low-level Map: Gridded AMVs available in the levels 701 hPa to 950 hPa are averaged for 

5-Day to generated 5-Day composite low-level Map    

12.6.2. Operational Implementation 

Step 1:  Extracting 30-minute AMVs from HDF5 file for current acquision time.  

Step 2: 30-minutes AMV are gridded into 05 x 05 degree horizontal resolution and 18 vertical 

levels.  
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Step 3: 5-day average is done to generate 5-Day composite AMV map for High, Mid and Low-

levels.    

12.7. Outputs 

Parameters Unit Minimum Maximum Accuracy Resolution 

5-Day AMV composite Maps 

(running averaged) for  

High (100-400 hPa),  

Mid (401-700 hPa) and  

Low (701-950 hPa) 

(i.e. GIF/TIF images) 

at every 30-minute interval 

Not Applicable 

High-Level : TIR1 and WV AMVs available in 100-400 hPa 

Mid-Level : TIR1, WV and VIS/MIR AMVs available in 401-

700 hPa 

Low-Level: TIR1 and VIS/MIR AMVs available in 701-950 

hPa  

 Domain: 0-130oE, 50oS-50oN 
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13. High Resolution Visible Winds (HRVIS) 
 

  

S.No. Product Name Spatial Resolution Temporal Resolution 

1 3RIMG_L2P_HVW Point (Tracer location) 30 minutes 
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13.1. Algorithm Configuration Information 

13.1.1. Algorithm Name 

High Resolution Visible Winds (HRVIS) 

(Ref : IMD RFP Section 11.14 ) 

13.1.2. Algorithm Identifier 

3RIMG_L2P_HVW 

13.1.3. Algorithm Specification 

Version Date Prepared by Description 

 
1.0 

 
04.08.2018 

S.K. Deb,  
C.M. Kishtawal,  
Dineshkumar K. Sankhala 

 
Visible winds Baseline 

Document 

13.2. Introduction 

The purpose of this document is to present an algorithm for retrieving High Resolution Visible 

Winds (HRVIS) from INSAT-3DR imager channel and its validation procedure. The INSAT-3DR 

will have one visible channel (0.55 – 0.75 (m). In this document some background and general 

characteristic of satellite-derived winds from visible channels and INSAT-3DR visible channel 

characteristics; the methodology employed to derive the vector fields, theoretical basis and 

practical aspects of this algorithm and outlined the planned validation approach. 

13.2.1. Overview and background  

Spatio–temporal analysis of meteorological events is an important part of routine numerical 

weather analysis. In that context, a cloud tracking method is presented here for a sequence of 

geostationary satellite images. Given a pair of remotely sensed images, captured at a fixed time 

interval (typically, 30 min), the objective is to derive motion vectors associated with the cloud 

mass. This correspondence process is a useful precursor to cloud motion vector studies and spatio–

temporal analysis of cloud life cycles. The spatio–temporal life cycle includes the generation, 

dissipation and assimilation of clouds that can be observed in a sequence of geostationary satellite 

images. During the 1970’s and early 1980’s, cloud motion winds were produced in major 

operational centers like NESDIS (National Environmental Satellite Data and Information Service) 

using a combination of automated and manual techniques. Early automated techniques supplied 

quality low-level vectors from visible channels but often yielded in consistent quality for mid- and 

high-level motions. Height assignment for the visible winds is done with collocated infrared 

images using infrared window technique. In the subsequent years, due to the developments in 

image-processing and pattern recognition techniques (Merill et al., 1991), it was possible to design 

fully automatic techniques for wind retrieval, and NESDIS began its application in 1992. In later 
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time, several new developments were made to make accurate retrievals of winds from satellite 

images.   

13.2.2. Objective 

The main objective of this study is to derive the High Resolution Visible Winds (HRVIS) over sea 

using multiple successive half hourly High resolution visible images. The region over which the 

winds are derived should be in the range of 500 from sub-satellite point.  

13.3. Inputs 

13.3.1 Static Data  

Parameter Resolution Source 

Continental boundary data 1 km DP (IMD data) 

13.3.2. Image and preprocessing data (Dynamic) 

Parameter Resolution Quantization Accuracy 

Radiometric and geometric corrected 

gray count values of  split window IR 

channel (10.5-11.5 μm and 11.5-12.5 

μm) and VIS channel (0.65 μm) 

(All the data is required in fixed lat-lon 

grid for continuous 4-images separated 

by 30 minutes time interval) 

L1C- sector generated product at 1 Km 

resolution 

pixel 10 bit -- 

Gray value to brightness temperature 

conversion table 

- - 0.3 K 

Geo-location file Pixel - 1 km 
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13.3.3. Other Auxiliary data and Model Inputs 

        Parameter Resolution Accuracy Source 

Numerical model forecast 

of wind for all levels 

 

0.5 degree 

2 m/s (speed) 

20o (direction) 

 

NCEP 

All levels model forecast 

Temperature 

1o K 

 

13.4. Algorithm Functional Specifications 

13.4.1. Tracer selection: 

At the National Environmental Satellite, Data, and Information Service (NESDIS), the initial cloud 

features are selected by locating the highest pixel brightness values for each target domain and 

computing the local gradients around those locations (Nieman et al., 1997). Any gradients greater 

than 15° K are assigned as target locations, and prospective targets also undergo a spatial coherence 

analysis (Coakley and Bretherton, 1982) to filter out unwanted targets. Water vapor tracers are 

generally identified using the local bi-directional gradients in a template of specified size and 

compared with empirically determined thresholds to identify the features with sufficient variability 

(Velden et al., 1997) and those that pass the threshold value are identified as tracers for cloud-free 

environments. The pixel with maximum bi-directional gradient is the location of the tracer. At the 

European Organization for the Exploitation of Meteorological Satellites (EUMETSAT), the tracers 

in the Meteosat (first-generation satellites) images are selected using multispectral histogram 

analysis (Tomassini, 1981), which extracts the dominating scenes in an image segment. Later the 

selected templates undergo a spatial coherence analysis (Coakley and Bretherton, 1982) to filter 

the image, to enhance the upper-level cloud. In the present study the features are selected by 

computing local image anomaly in a 24 x 24 template window (in pixel), both in cloudy regions 

of the visible images. The local image anomaly is calculated using the following formula: 

 
i j

IjiIa ),(                              (1) 

Where  jiI ,  represent the grey value for (i, j) pixel of a template window and bar represents the 

mean of grey values within that template. The anomaly-based tracers are generally produced by a 

smooth feature field in comparison to the gradient-based features. This difference can help in 

reducing the tracking errors (Deb et al., 2008). 
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13.4.2. Height assignment 

The height assignments of the selected tracers selected based on the above criterion are derived 

using the collocated infrared images with the following widely used methods viz. such as the 

infrared window (WIN) technique and the cloud base method (LeMarshall, 1993). Once final 

height is selected a few gross error checks are also applied. A brief description of each method is 

following: 

(a) Infrared Window Channel (WIN): 

In this method the height assignment using a single satellite channel is made by comparing either 

infrared window brightness temperature (BT) values with NWP model forecast temperature 

profiles. Cloud heights are determined by interpolating the cloud temperature, which is an average 

of coldest 20% of pixels, to the interpolated model guess field at the target location. A 6-h NWP 

model forecast from National Center for Environmental Prediction (NCEP) Global Forecast 

System (GFS) is the source of temperature profile. This method works well with opaque clouds. 

However, movement of opaque clouds usually does not accurately represent atmospheric motion 

at the assigned level (Nieman et al., 1993), resulting in a lower derived wind speed than observed.  

(b) Cloud Base Method (BASE): 

Wind speeds for low-level cumulus clouds (cloud top pressures greater than 600 hPa or altitudes 

lower than 600 hPa) have been found to be best represented by the movement at the cloud base 

level instead of the mid or upper levels of the cloud (Hasler et al., 1979). A method was developed 

at the Australian Bureau of Meteorology (LeMarshall, 1993) to estimate this height using the 

Infrared Window channel. This method first constructs a histogram of the BT values over a selected 

region surrounding the cloud target being examined. This histogram is then smoothed and Hermite 

polynomials are fitted to the histogram to separate the distribution into two components; a cloudy 

and clear sky region. Assuming the distributions are normal, the cloud base height can be 

estimated. The mid cloud temperature is determined by examining the second derivative histogram 

of the cloudy distribution, while the cloud top temperature is estimated to be located at the coldest 

5% of the cloudy distribution. The cloud base temperature is estimated to be located the same 

distance from the mid cloud temperature as the cloud top temperature. The calculated cloud base 

temperature is converted to a pressure using model field interpolated to the target location. As 

mentioned previously, this height assignment method is only applied to those targets which are 

calculated to have a cloud top pressure of greater than 600 hPa (i.e. altitude lower than 600 hPa). 

This "initial" target cloud top height is provided by one of the previous Infrared Window height 

assignment methods. The BASE method is used to adjust only these winds, and is not utilized for 

water vapor winds or winds with pressures less than 600 hPa (i.e. altitudes higher than 600 hPa).  

Once the visible tracers heights using the above two algorithms have been calculated, the best 

height among the available heights is determined. The lowest pressure (highest altitude) value of 

all the calculated height values is used as the final pressure height. However, if for a specific visible 
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tracer final height is WIN and a valid BASE height is available, then the BASE height is used as 

the final height. Once the final height using the above height assignment method is established, 

the pressure height is optimized using minimized differences with first guess winds up to 75 hPa 

in upwards and downwards directions. 

13.4.3. Tracking 

If a traceable feature is found in the first image and corresponding height of the selected tracers 

are estimated, the match of this template is searched in the second image within a bigger ‘‘search 

window’’, centered at the same point as the template window. To optimize the search window size, 

the first guess model wind direction at the tracer location is also considered. The search area is 

optimized within ±30 degree from the model wind direction at that level of atmosphere. The 24 X 

24 template (in pixel) in the second image that lies within the search window should have the same 

class as the template in the first image; otherwise the template in the second window is rejected. 

The cross-correlation technique is used operationally for tracking the tracer between two images 

in most operational centers. However, in this study the degrees of matching between two 

successive images are calculated by the Nash-Sutcliffe model efficiency (Nash and Sutcliffe, 1970) 

coefficient (E). It is defined as 
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Where tI and sI  are the variance of the grey values for template window and search window and 

tI is the average of variance of template window.  Here n is 24 x 24 (in pixel) and this is the size 

of template window and corresponding template of same size in the searching area. The size of the 

searching area in the subsequent image is taken as 64 x 64 (in pixel). The coefficient E is 

normalized to values between –∞ and +1. An efficiency E = 1 corresponds to a perfect match, E = 

0 means that search window is as accurate as mean of the template window and E< 0 implies the 

lack of matching between template and search window. The closer the model efficiency to 1, the 

more accurate the matching between the windows. A cut-off value of E=0.8 is defined, below 

which a matching of target is not considered. The Nash-Sutcliffe model efficiency coefficient (E) 

is normalized and its value lies between -∞ and 1, towards the higher end (e.g. as E→ 1.0), the 

value of E approaches r2, where r is the correlation coefficient. Thus a value of E=1 is exactly 

equivalent to a correlation of 1.0 between two objects.  The maximum value of E is chosen as the 

best fit for tracking. One of the main advantages of this matching technique is that it reduces the 

possibility of multiple maxima, because the parameter E has a higher sensitivity to differences 

between two features compared to maximum cross correlation coefficient (MCC). Thus, when the 

degree of mismatch between two objects increases, the value of E falls more sharply compared to 

that of MCC, making E a better index for matching two objects. The application of this tracking 
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method in estimation of water vapor winds has shown some improvement over Indian Ocean 

region (Deb et al., 2008).    

13.4.4. Wind buffer generation and Quality control 

Quality indicator of a derived wind vectors is traditionally represented as the degree of the 

coherence of a given vector with its surrounding. In most of the operational centers the AMVs are 

derived from three successive satellite images and the quality control of the retrieved winds are 

done either through Quality Indicator (QI) (Holmlund, 1998) followed at EUMETSAT or through 

3-dimensional recursive filter function  followed at NESDIS (Nieman et al., 1997) or both the 

algorithms together. In the present study a new technique of wind buffer generation and 

subsequently QI procedure followed at EUMETSAT is proposed. In this technique, a wind buffer 

is created using previous three images between a pair of images (viz. between 1-2 and 2-3) and 

stored in a file (Fig. 1).  The previous three images were considered to maintain the minimum 4-

hour decorrelation timescale during retrieval. In quality control procedure consists of a coherence 

analysis which forms the basis for acceptance/rejection of a vector and degree of coherence 

computed is used to assign quality flags to the derived vector. The value of quality flag falls sharply 

by an exponential function, as the disagreement of a given vector with its surroundings increases. 

Here each vector wind is represented by a complex number jiji
c

ji viuV ,,,  . For every new vector 

under consideration, (from current image-pair), its vector difference from the buffer is computed 

at the same as well as 3 X 3 neighborhood (Fig. 1), provided, the vectors to be compared show 

similar brightness characteristics (to maintain the similar height). 

 

Fig 1: A schematic diagram of quality control process. 

Here X (cross sign) at the centre of first box represents the current vector under consideration and 

O (circle sign) represents spatial and temporal neighborhood vectors. The vector differences 

(magnitude of complex numbers) are calculated as    tji
c

tjidif VVV ,,,,
 . Here cV  represents the 

current vector at (i, j) point and  tjiV ,,  neighborhood vectors with 11,11  ji  and 

temporal scale t varies from 1 to 3. If all spatial and temporal neighborhood vectors are present, 

then the difference set will contain 27 vectors (9 spatial neighborhoods with 3 temporal scales). 

However, all vectors may not be there all the times. The quality control process begins if at least 
10 vector differences difV , excluding the difference corresponding to current (i, j), are present in 
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the set. In the next step, set of vector differences  difV  is arranged in ascending order. The quality 

control process begins is the average of 10 difV  is greater than 2.5 m/s. In the next step, the QI 

value for each vector is determined by using EUMETSAT procedure where four different tests are 

performed, which is normalized by a tanh-function that returns the value between 0 and 1. A 

weighted average of these individual quality indicators is then used for screening of poor quality 

vectors from final output. If any vector is not present in the immediate two pairs, then in-stead of 

rejecting, search process goes to the previous time steps of the wind buffer and if still it is not 

present it goes to next previous times steps and so on. 

If S is the mean “speed” of a vector computed from two pair of images, then different quality 

functions are computed as below: 
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In the above formulation, VS  ,, represent the difference of direction (degrees), difference of 

speed, and the length of the difference vector between first and second satellite wind component. 

mV  is the length of difference vector between satellite wind component and its best neighbor. 

The best neighbor is determined by the smallest vector difference. Quantities AN, BN, CN, and DN 

are constants. The final quality indicator of a wind vector is given as  
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QI = 
0.4

PCFVCFSCFDCF 
 

 All the vectors with QI < 0.6 are rejected.  

The constant quantities AN, BN, CN, and DN are chosen as: 

 

 

Direction 
consistency 

A1 50  

Vector consistency 

A3 0.8 

B1 15 B3 0.01 

C1 15 C3 1.0 

D1 8 D3 5.0 

 

Speed 
consistency 

A2 0.5  

Spatial consistency 

A4 0.2 

B2 0.01 B4 0.01 

C2 2.0 C4 1.5 

D2 0.7 D4 0.75 

 

In the conventional triplet based methodology requires that a vector is available in both sets (i.e. 

in 1-2 and 2-3), if not so, such vectors are rejected, because they don’t get “support”. Hundreds of 

“isolated” vectors thus get eliminated, even though they represent the real situation. In the current 

method, the vector under consideration receives support from the past eight images. This method 

produces higher number of valid retrieval in the low-level and captures upper-level meridional 

flow very prominently. To explain this more explicitly, if we take three satellite images each with 

30-minute interval stating at 02:30 UTC to 03:30 UTC, then winds retrieved using each-image pair 

are stored as buffer in a file and represented as wind buffer generated at 03:30 UTC. The buffer 

generated at 03:30 UTC is used for quality control for wind retrieved using 03:30 UTC and 04:00 

UTC images and the second image time is given as actual observation time of retrieved wind. For 

example, winds retrieved using 03:30 UTC wind buffer and 03:30 UTC and 04:00 UTC images is 

given as 04:00 UTC observation time. As a whole to complete the process once it requires four 

images. Similarly, the buffer is updated at every 30-minute with the latest available image and 

process is repeated for next cycle of wind retrieval. This method produces higher number of valid 

retrieval in all levels and captures upper-level meridional flow very prominently. 

13.5. Operational Implementation 

Step 1: Tracer selection from image 

 Cloud tracer selection will be done by evaluating the local image anomaly surrounding 

each pixel in the target array and selecting the maximum brightness temperature of the 

window. 
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Step 2: Height assignment 

 Assign height of the selected tracer using IR window technique. In this case the 

brightness temperature in the target window will be averaged and matched with 

collocated numerical model temperature profile. The level of optimum fit will be 

assigned as initial height. 

 Re-assign the height using cloud-base height assignment technique. 

 Assign correct height after implementing all the height assignment technique 

mentioned above. 

Step 3: Tracking 

 The tracking employs a simple search for the mean absolute difference of the radiance 

difference between the target and search arrays in subsequent half hourly images. 

This search will be done in the direction of  30o of model wind. 

Step 4: Wind buffer generation & quality control 

 The wind buffer is created using previous three images between pairs of images (viz. 

the winds retrieved between 1-2 and 2-3) and stored in a file. The selection of three 

images is consistent with decorrelation timescales of winds over tropical region. 

 Use quality control criteria for selecting wind using the wind buffer. 

 Calculate wind speed and direction. 

13.6. Outputs 

Parameter Unit Min Max Accuracy Resolution 

U and V component 

of HRVIS 

m/sec 0 90 2-3 m/sec 

(lower level) 

-- 

Domain of output : 30oE – 130oE :: 50o S – 50o N 

 

13.6.1. Format of the output and the domain 

As output of HRVIS wind the following parameters will be provided to IMD:  

 Zonal and meridional components of the wind vectors. 

 Latitudinal and longitudinal position.  

 Height of wind 
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The format of the final product: 

 

13.7. Validation 

13.7.1. Data required 

Parameter Type Source 

Wind Collocated Radiosonde Profiles IMD 

 

13.7.2. Methods of validation  

The evaluation of HRVIS winds should be taken into both qualitative and quantitative measures. 

Quantitative assessment of the HRVIS winds product is possible from statistical analyses and 

impact on NWP. The traditional method of validation is matching observations with collocated 

radiosondes. The statistical validation will be done according to the CGMS winds evaluation 

reporting guidelines. These statistics can provide a fixed measure of product quality over time and 

can be employed in determining observation weight in objective data assimilation.  At the CGMS 

XXIII the Working Group on Satellite Tracked Winds recommended that evaluation of operational 

wind production quality should be accomplished with a new standardized reporting method. The 

recommended three parts to the report.   

i) Monthly means of speed bias and rms vector difference between radiosondes and satellite winds 

for low (>700 hPa), medium (700-400 hPa), and high (< 400 hPa) levels together with the 

radiosonde mean wind speed.  This should be done for three latitude bands: north of 20 N, the 

tropical belt (20 N to 20 S), and south of 20 S. 

ii) Trends of the evaluation statistics for the monthly cloud motion vectors and water vapor motion 

vectors through the last 12 months.   

 iii) Information on recent significant changes in the wind retrieval algorithm. 

The vector Difference (VD) between an individual wind report (i) and the collocated radiosonde 

report used for verification is given by 

Para

meter 

Lat Lon. Level U-

comp

onent 

V-

comp

onent 

Quality 

Flag 

Wind 

Speed 

(m/s) 

Wind 

direction 

(clockwise 

from North) 

Wind 

zenith 

angle 

Unit N E hPa m/s m/s 0.0 to 

0.9  

m/s Deg Deg 
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The mean vector difference (MVD) traditionally reported is 
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And the standard deviation (SD) about the mean vector difference traditionally reported is 
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The root-mean-square error (RMSE) traditionally reported is the square root of the sum of the 

squares of the mean vector difference and the standard deviation about the mean vector difference, 

(����) = [(���)� +  (��)�]
�
� 

It must be noted that this definition of the mean vector difference is not the same as the mean 

component difference.  The mean difference is calculated from the sum of the squares of the 

deviations of each component (u and v) of the wind vector. 

(∆��) = �(��  − ��)�

�

���

 

(∆��) = �(��  −  ��)�

�

���

 

To avoid confusion, a common terminology will be accepted. It is suggested to report mean vector 

difference (MVD) and standard deviation (SD). The standard accuracy according to CGMS 

guideline for CMV is that the root mean square error (RMSE) for WV winds should be 7m/s 

respectively with respect to radiosonde observations. The mean bias for both sets of winds should 

be about zero. 

13.8. Technical Issues (Limitations etc.) 

Accuracy of the product depends on the accuracy of the registration of the images. If the 

registration has an error of 1 pixel, then error of the final product will be increased. However, the 

following limitations of the present study have to be kept in mind.However, the retrieved vectors 

in regions are lacking in defining moisture structure, though they have the ability to obtain track-

able information in extremely dry air masses and regions of strong subsidence is limited. The 



                     INSAT-3D Incremental ATBD (MMDRPS), November 2018                   146 

 

individual vectors represent single level reports; however, upper level vertical winds profiles are 

possible by using multi-spectral observations. 

a) Sensitivity of error in height assignment to the error in wind speed retrieval 

This sensitivity will depend upon the structure of wind circulation over different vertical levels as 

well as different geographical regions. For example, in the vicinity of atmospheric jets, the 

retrieved wind vectors will be highly sensitive to the errors in the assigned pressure levels. Based 

on some standard analysis (e.g. NCEP reanalysis of 6-hourly sampling), we will provide a 

quantitative assessment of the vertical and spatial structure of this sensitivity. 

b) Numerical model to be used for AMV height assignment 

We plan to use IMD’s operational regional model output during height assignment procedure. 

However, if the domain of this regional model is smaller than the area of AMV retrieval, either 

IMD may be requested to increase the domain of its operational model, or a lower-quality solution 

based on the output of coarser-resolution GCM will be generated over the regions not covered by 

IMD’s regional model. 

c) Whether RT model to be used in real-time for height assignment   

To use RT model in real-time height-assignment application is generally required to find the 

optimum solution. However, it is computationally expensive and may increase the AMV turn-

around time very significantly. Efforts are currently underway to develop an empirical version of 

RT model that can be used for simulation of IR and water-vapor channel radiances for a variety of 

cloud heights. The inverse of this empirical model will then be used in real-time applications.  

 

d) Comparison of maximum-correlation and minimum-difference methods for tracking of 

cloud-tracers. 

The comparison has been made for a large number of image samples and it was found that the 

efficiencies of minimum-difference method (MDM) and maximum cross correlation (MCC) 

methods are comparable, while the MDM method is significantly faster than MCC. 
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14. Atmospheric Motion Vectors: Staggering 
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14.1. Algorithm Configuration Information 

14.1.1. Algorithm Name 

Staggered Atmospheric Motion Vectors Winds (TIR1 and WV)  

(Ref : IMD RFP Section 11.14 ) 

14.1.2. Algorithm Identifier 

  3DIMG_L2P_IRW_MERGED; 3RIMG_L2P_IRW_MERGED 

  3DIMG_L2P_WV_MERGED; 3RIMG_L2P_WV_MERGED 

14.1.3. Algorithm Specification 

Version Date Prepared by Description 

1.0  

 

19.11.2018 S.K. Deb 

C.M. Kishtawal 
Staggered AMV Baseline 

Document 

14.2.  Introduction 

The geostationary satellite derived winds, also known as Atmospheric Motion Vectors (AMVs) are 

considered as one of the most reliable source of wind information over oceanic region where 

normal ground based observations are very rare. Presently in India operationally AMVs are 

available from two advanced meteorological satellites INSAT-3D (Deb et al., 2016, Kishtawal et 

al., 2009) and INSAT-3DR using consecutive 30-minutes images (www.mosdac.gov.in). It is also 

well established that assimilation of AMVs in the numerical weather prediction (NWP) model 

leads to significant improvement in the weather forecast (Deb et al, 2010; Kaur et al., 2015; Kumar 

et al. 2016) over the Indian Ocean region. The purpose of this document is to present an algorithm 

for retrieving Atmospheric Motion Vectors (AMVs) from INSAT-3D and INSAT-3DR in 

staggering mode and its validation procedure. The INSAT-3D/3DR have two IR window channels 

(10.5-11.5μ and 11.5-12.5 μ). In this document some background and general characteristic of 

satellite-derived AMV and INSAT-3D/3DR IR channel characteristics; the methodology employed 

to derive the vector fields, theoretical basis and practical aspects of this algorithm and outlined the 

planned validation approach. 

14.2.1. Overview and background  

The availability of data from both INSAT-3D and INSAT-3DR with similar spectral characteristic 

and region of interest, at every 15-minutes has motivated us to re-look further for the improvement 

in retrieval algorithm to get better quality AMVs over the Indian Ocean region. The specific reason 

for this motivation is that in stead of using 30-minute images for winds retrieval, the accuracy of 

winds will improve if shorter spatio-temporal images are used during the retrieval. For example, 
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if INSAT-3D captured image at 0000 UTC, then INSAT-3DR does at 0015 UTC and similar 

nomenclature follows for other time of the day. The operational meteorological parameters derived 

using INSAT-3DR are same as that of INSAT-3D, with 15 minute time gap. In both the satellites, 

spectrum of the atmosphere is covered by six imager channels i.e. the Visible (VIS), Short-wave 

infrared (SWIR), Mid-wave infrared (MIR), Water vapor (WV) and two split window thermal 

infrared (TIR1 and TIR2) channels. The image registration accuracy significantly improved 

because of star sensors are present on both the satellites. The individual INSAT-3D and INSAT-3DR 

AMVs are derived every 30-minute intervals. As an example, the INSAT-3D AMVs are retrieved 

at 0000, 0030, 0100 UTC, while INSAT-3DR AMVs are derived at 0015, 0045, 0115 UTC 

respectively. The AMV derived from these satellites are widely accepted by different national and 

international operational agencies. In the present study, the algorithm for deriving AMVs using 

infrared and water vapor images from INSAT-3D and INSAT-3DR data in staggering mode is 

demonstrated. Subsequently, this new AMVs generated using staggering mode will bee inter-

compared with individually retrieved INSAT-3D and INSAT-3DR AMVs.  

14.2.2. Objective 

The availability of data from both INSAT-3D and INSAT-3DR with similar spectral characteristic 

and region of interest, at every 15-minutes has motivated to re-look further for the improvement 

in retrieval algorithm to get better quality AMVs over the Indian Ocean region. The specific reason 

for this motivation is that in stead of using 30-minute images for winds retrieval, the accuracy of 

winds will improve if shorter spatio-temporal images are used during the retrieval. The main 

objective of this study is to derive the algorithm for retrieving AMVs using infrared and water 

vapor images from INSAT-3D and INSAT-3DR data in staggering mode.   

14.3. Inputs 

14.3.1. Static Data  

 

 
Parameter Resolution Source 

Continental boundary data 4 km DP (IMD data) 
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14.3.2. Image and pre-processing data (Dynamic) 

 

14.3.3. Other Auxiliary data and Model Inputs 

      Parameter Resolution Accuracy Source 

Numerical model forecast of wind 

for all levels 

   

 

0.5 degree 

2 m/s (speed) 

20o (direction) 

 

NCEP 

All levels model forecast 

Temperature 

   

1o K 

 

14.4.  Algorithm Functional Specifications 

14.4.1. Methodology 

The operationally four different spectral channels of INSAT-3D and INSAT-3DR are used to derive 

AMVs over the Indian Ocean region and operational retrieval algorithm is described in Deb et al. 

2016. In the present document, a new staggering algorithm is discussed where data from infrared 

(i.e. TIR1) and water vapor (i.e. WV) channels of both the satellites are used simultaneously for 

higher temporal scale retrieval. Although the major steps of retrieval algorithm (i.e. Tracer 

Parameter Res. Accuracy Source 

Registered radiometric and geometric 

corrected gray count values of split 

window TIR1 channel (10.5-11.5 μm) 

and WV channel (6.7μm) 

(All the data is required in fixed lat-

lon grid for continuous 8-images 

separated by 30 minutes time interval 

for each satellite) 

L1C- Sector generated images over 

common area.  

It is assumed here that all input 

images (both INSAT-3D and 

INSAT-3DR) are well registered. 

pixel -- Derived from raw 

data by DP (data 

rocessing) 

Gray value to brightness temperature 

conversion table 

- 0.3 K Derived by DP 

Geo-location file Pixel 4 km Derived by DP 
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selection, height assignment, tracking and quality control etc) staggering algorithm is same as 

present operational algorithm, however a few changes incorporated in the new algorithm to 

minimize the inaccuracies due to two separate satellite platform is shown in the following Figure 

-1.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: The flowcharts of staggering AMVs retrieval algorithm using INSAT-3D/3DR data 

 

At first, the satellite ID from which first input image is coming is checked, if it is from INSAT-

3DR, then second image from INSAT-3D is read. In the first image possible cloud tracers are 

identified and each selected tracer is represented by a box of 32 x 32 pixel. The tracer box in the 

first image (i.e. INSAT-3DR) is calibrated with respect to the collocated box in second image (i.e. 

INSAT-3D) using the following formula: 

   2

1

2
111

)var(

)var(
I

I

I
III 
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Here, I1 and I2 represent the 32 x 32 (in pixel) tracer boxes from first and second image 

respectively. Var(I1) and Var(I2) represent the variance of the tracer boxes. This is performed to 

reduce the uncertainty in inter-calibration of two different satellites, all-though their sensor 

specifications are exactly same. Then cloud tracers are selected by local image anomaly technique 

in a particular image and subsequently height of the selected tracers is calculated. The height 

assignment component of operational AMV retrieval algorithm uses widely used traditional 
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methods viz. the infrared window (WIN) technique, the H2O intercept method (Nieman et al., 

1993) and the cloud base method (LeMarshall et. al., 1993). Then selected tracers are tracked in 

larger window in the subsequent image by using the Nash-Sutcliffe model efficiency [Nash and 

Sutcliffe, 1970] coefficient. The detailed description of each step is already discussed in the 

Algorithm Theoretical Basis Document (ATBD) of infrared and water vapor winds from INSAT-

3D or INSAT-3DR (Deb et al. 2008)  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: A sample flow-diagram of methodology for the retrieval of AMVs in staggering mode for a 

particular time 0500 UTC. 

 

If the selected first image is from INSAT-3D, the tracers are selected and height assignment is done, 

then before tracking the selected tracers in the second INSAT-3DR image, collocated tracer box in 

INSAT-3DR is calibrated to INSAT-3D equivalent. The process of tracer selection, height 

assignment and tracking is repeated for sixteen pair of images to generate sixteen pairs of raw 

winds which is called as wind buffer. Later, this wind buffer is used for quality control of AMVs. 

During the quality control, temporal, spatial consistency checks are performed with neighboring 

vectors extracted from the wind buffer. A sample flow-diagram of methodology for the retrieval 

of staggering AMVs at 0500 UTC is shown in Figure-2. To derive winds valid at 0500 UTC 

requires total seventeen images of 15-minute interval viz. nine images from INSAT-3D starting 

from 0100 UTC and eight images from INSAT-3DR starting from 0115 UTC. In the next steps 
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wind buffer is calculated using sixteen wind pairs. In the following step quality control technique 

is applied to wind buffer to estimate the final output valid at 0500 UTC.  

14.4.2. Operational Implementation 

Step 1 : Conversion from gray count to BT 

 Since accuracy of the wind is dependent on image registration and it is assumed here that 
all input images are well registered. The details algorithm for registration is defined in the 

data product document as provided by DP team. In this step a radiation model will be 
used to convert the instrument measured radiance into brightness temperature. This 
requires an accurate definition of the spectral response of the satellite.  

Step 2: Tracer selection from image 

 Read first two registered images from INSAT-3D and INSAT-3DR.  

 Choose the tracer box in the first image (i.e. 3D) and calibrate the similar tracer box from 
3DR from second image into 3D equivalent.  

 Cloud tracer selection will be done by evaluating the maximum local gradients 
surrounding each pixel in the target array and selecting the maximum brightness 
temperature of the window.    

Step 3: Height assignment 

 For height assignment use brightness temperature from single satellite (i.e either 3D or 
3DR) to avoid height inaccuracies due to inter-calibration of two satellites.  

 Assign height of the tracer using IR window technique. In this case the brightness 
temperature in the target window will be averaged and matched with collocated numerical 
model temperature profile. The level of optimum fit will be assigned as initial height. 

 Re-assign the height using H2O intercept technique for semi-transparent tracers. 

 Re-assign the height using cloud-base height assignment technique. 

 Assign correct height after implementing all the height assignment technique mentioned 
above. 

 Height optimization using minimized differences with first guess. 

Step 4: Tracking 

 Before tracking the tracer selected from first image in the second image, bigger tracking 

area in the second image is calibrated with respect to the first image. 

 The tracking employs a simple search for the mean absolute difference of the radiance 

difference between the target and search arrays in subsequent half hourly images. This 

search will be done in the direction of 30o of model wind. 
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Step 5: Wind buffer generation & quality control 

 The wind buffer is created using previous eight images between pairs of images (viz. the 
winds retrieved between 1-2, 2-3, 3-4, 4-5, 5-6, 6-7 and 7-8) and stored in a file.  The 
selection of eight images is consistent with decorrelation timescales of winds over tropical 
region. 

 Use quality control criteria for selecting wind using the wind buffer. 

 Use EUMETSAT automatic quality control method to get the QI 

 Calculate wind speed and direction.       

14.5.  Outputs 

Parameter Unit Min Max Accuracy Resolution 

U and V 

component 

of staggered 

AMV 

m/sec 0 90 4-6 m/sec 

(upper level) 

3-4 m/sec 

(lower level)  

-- 

Domain of output : 30oE – 130oE :: 50o S – 50o N 

 

Format of the output and the domain 

       As output of AMV the following parameters will be provided to IMD:  

 Zonal and meridional components of the wind vectors. 

 Latitudinal and longitudinal position.  

 Height of AMV 

      The format of the final product will be like this: 

 

Para

meter 

Lat Lon Level U-

comp

onent 

V-

comp

onent 

Quality 

Flag 

Wind 

Speed 

(m/s) 

Wind 

direction 

(clockwise 

from 

North) 

Wind 

zenith 

angle  

Unit Deg 

N 

Deg 

E 

hPa m/s m/s 0.0 to 

0.9 

m/s  Deg   Deg 
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14.6  Validation 

14.6.1. Data required 

Parameter Type Source 

Wind Collocated Radiosonde Profiles IMD 

 

14.6.2. Methods of validation  

The evaluation of CMV should be taken into both qualitative and quantitative measures.  

Quantitative assessment of the CMV product is possible from statistical analyses and impact on 

NWP. The traditional method of validation is matching observations with collocated radiosondes. 

The statistical validation will be done according to the CGMS winds evaluation reporting 

guidelines. These statistics can provide a fixed measure of product quality over time and can be 

employed in determining observation weight in objective data assimilation.  At the CGMS XXIII 

the Working Group on Satellite Tracked Winds recommended that evaluation of operational wind 

production quality should be accomplished with a new standardized reporting method.  The 

recommended three parts to the report.   

a. Monthly means of speed bias and rms vector difference between radiosondes and satellite 

winds for low (>700 hPa), medium (700-400 hPa), and high (< 400 hPa) levels together with 

the radiosonde mean wind speed.  This should be done for three latitude bands: north of 20 

N, the tropical belt (20 N to 20 S), and south of 20 S. 

b. Trends of the evaluation statistics for the monthly cloud motion vectors and water vapor 

motion vectors through the last 12 months.   

c. Information on recent significant changes in the wind retrieval algorithm. 

The vector Difference (VD) between an individual wind report (i) and the collocated radiosonde 

report used for verification is given by  

                      (VD)  =   [ (Ui – Ur)2  +  (Vi – Vr)2 ]1/2 

The speed bias is given by 

The mean vector difference (MVD) traditionally reported is   

                           N 

(BIAS)i  =  1/N ∑  [( Ui2   +  V i2 )1/2   -  (Ur2   +  Vr2 )1/2  ] 

                          i=1 

                        N 

(MVD)  = 1/N ∑ (VD)i         

                        i=1                
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And the standard deviation (SD) about the mean vector difference traditionally reported is  

                                          N          

                  (SD)  =  [1/N  ∑ ( (VDi) – (MVD) )2 ]1/2 

                                   i=1            

The root-mean-square error (RMSE) traditionally reported is the square root of the sum of the 

squares of the mean vector difference and the standard deviation about the mean vector difference, 

                          (RMSE) = [(MVD)2  +  (SD)2  ]1/2 

It must be noted that this definition of the mean vector difference is not the same as the mean 

component difference.  The mean difference is calculated from the sum of the squares of the 

deviations of each component (u and v) of the wind vector. 

To avoid confusion, a common terminology will be accepted.  It is suggested to report mean vector 

difference (MVD) and standard deviation (SD). The standard accuracy according to CGMS 

guideline for CMV is that the root mean square error (RMSE) for WV winds should be 7m/s 

respectively with respect to radiosonde observations.  The mean bias for both sets of winds should 

be about zero. 

14.7. Technical Issues (Limitations etc) 

Accuracy of the product depends on the accuracy of the registration of the images. If the 

registration has an error of 1 pixel, then error of the final product will be increased. However the 

following limitations of the present study have to be kept in mind. The spatially coherent, high 

resolution coverage of upper tropospheric winds are possible from geostationary satellite remote 

sensing of water vapor. CMV are comparable in quality to operational upper-level cloud-motion 

vectors. However, the retrieved vectors in regions are lacking in defining moisture structure, 

though they have the ability to obtain track-able information in extremely dry air masses and 

regions of strong subsidence is limited. The individual vectors represent single level reports; 

however, upper level vertical winds profiles are possible by using multi-spectral observations. 

a. Sensitivity of error in height assignment to the error in wind speed retrieval 

     N 

(∆U2)  =  ∑ (Ui –Ur)2   

               i=1 

 

               N 

(∆V2)  =  ∑ (Vi –Vr)2   

               i=1 

 

(MCD) =   [ (∆U2)  + (∆V2)  ]1/2  ≠ (MVD) 
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This sensitivity will depend upon the structure of wind circulation over different vertical levels as 

well as different geographical regions. For example, in the vicinity of atmospheric jets, the 

retrieved wind vectors will be highly sensitive to the errors in the assigned pressure levels. Based 

on some standard analysis ( e.g. NCEP reanalysis of 6-hourly sampling), we will provide a 

quantitative assessment of the vertical and spatial structure of this sensitivity. 

b. Numerical model to be used for AMV height assignment 

We plan to use IMD’s operational regional model output during height assignment procedure. 

However, if the domain of this regional model is smaller than the area of AMV retrieval, either 

IMD may be requested to increase the domain of its operational model, or a lower-quality solution 

based on the output of coarser-resolution GCM will be generated over the regions not covered by 

IMD’s regional model. 

c. Whether RT model to be used in real-time for height assignment   

To use RT model in real-time height-assignment application is generally required to find the 

optimum solution. However, it is computationally expensive and may increase the AMV turn-

around time very significantly. Efforts are currently underway to develop an empirical version of 

RT model that can be used for simulation of IR and water-vapor channel radiances for a variety of 

cloud heights. The inverse of this empirical model will then be used in real-time applications.  

 

d. Comparison of maximum-correlation and minimum-difference methods for tracking of 
cloud-tracers. 

The comparison have been made for a large number of image samples and it was found that the 

efficiencies of minimum-difference method (MDM) and maximum cross correlation (MCC) 

methods are comparable, while the MDM method is significantly faster than MCC.    
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15. Modified GPI and IMSRA method 
 

 

 

  

S.No. Product Name Spatial Resolution Temporal Resolution 

1 IMG_IMSRA 4 km x 4 km 30 minutes 
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15.1. Algorithm Configuration Information 

15.1.1. Algorithm Name  

Modified Quantitative Precipitation Estimation (QPE) from GPI and IMSRA Techniques 

15.1.2 Algorithm Identifier 

3DIMG_L2G_IMR   

3DIMG_L3G_IMR_DLY 

15.1.3. Algorithm Specification 

 

Version Date Prepared by Description 

1.0  

 

15.08.2012 R M Gairola 

A.K. Varma 

QPE Baseline Document 

2.0  

 

01.05.2016 R M Gairola 

C. Mahesh 

MT Bushair 

QPE Baseline Document 

3.0  

 

01.08.2018 R M Gairola 

C. Mahesh 

Ipshita Dey 

QPE Baseline Document 

15.2.    INTRODUCTION 

Weather and climate affects many sectors of the human activity as well as many aspects of the 

world's natural ecosystems. The hydrological cycle is one of the important components of Weather 

and climate system. The hydrological cycle describes the exchange of water substance between 

sea, air, soil, rock, plants and animals. The precipitation and evaporation processes significantly 

affect the global hydrological cycle. The quantitative assessment of precipitation is needed to 

improve understanding of the behavior of global energy and circulation patterns as well as the 

nature of climate variability. The choice of measured parameter has been influenced by the cost of 

installation, operation, longevity and temporal as well as spatial coverage of the instruments. The 

land based techniques of rainfall estimation are not sufficient for global rainfall assessment as 

about 70% of the Earth is covered with water. The space borne measurement and monitoring of 

rainfall is, therefore, a topic of major interest since they provide global coverage both on land and 

ocean for an extended period of time. A longstanding promise of meteorological satellites is the 

improved identification and quantification of precipitation at time scales consistent with the nature 

and development of precipitation processes. Meteorological satellites expand the coverage and 

time span of conventional ground-based rainfall data for a number of applications. The primary 
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scope of satellite rainfall monitoring is to provide information on rainfall occurrence, amount and 

distribution over the regional to continental scales. The uneven distribution of rain gauges and 

weather radars and the relative lack of rainfall measurements over the oceans have significantly 

limited the use of global as well local data. Precipitation is one of the most variable quantities in 

space and time. Precipitation also has a direct impact on human life that other atmospheric 

phenomena seldom have: an example is represented by heavy rain events and flash floods (Barrett 

and Michell, 1991). Geostationary weather satellite visible (VIS) and infrared (IR) imagers provide 

the rapid temporal update cycle needed to capture the growth and decay of precipitating clouds. 

Microwaves provide the interaction of radiation with hydrometeors but with coarser resolution and 

limited swath widths of satellites with in tropical orbit such as the Tropical Rainfall Measuring 

Mission (TRMM) (Kummerow et al., 1998) and of sensors in polar orbits like the Special Sensor 

Microwave Imager (SSM/I) series.  

15.2.1 Overview  

Operational applications, require quantitative rainfall determination from a variety of precipitating 

systems, which differ both dynamically and microphysically. This fact prompts for non-unique 

solutions based on the physics of precipitation formation processes. Barrett and Martin (1981) and 

Kidder and Vonder Haar (1995) give excellent reviews of the available methods. Petty (1995) has 

examined the status of satellite rainfall estimation over land. Recent reviews Levizzani et al. (2001) 

has covered results and future perspectives from the geostationary orbit. The perspective varies 

widely from the relatively simple methods used for climatic-scale analyses (e.g. Arkin and 

Ardanuy, 1989; Arkin and Janowiak, 1991) to the more elaborate instantaneous rainrate 

estimations for research and nowcasting (Ba and Gruber, 2001; Turk et al., 2000; Vicente et al., 

1998). 

Recent technological developments of MW instruments on board polar orbiters have been dramatic 

but the use of VIS, IR and water vapor (WV) channels of geostationary satellites is still 

indispensable. In particular, the launch of the newest generation of geostationary satellites, the 

Geostationary Operational Environmental Satellite GOES-I-M series (Menzel and Purdom,1994) 

and the upcoming METEOSAT Second Generation (MSG) (Schmetz et al., 2002) with its Spinning 

Enhanced Visible and Infrared Imager (SEVIRI), adds new channels to the traditional VIS/IR/WV 

triplet. Some of the new channels have been tested for decades as part of the Advanced Very High 

Resolution Radiometer (AVHRR) series on board the National Oceanic and Atmospheric 

Administration (NOAA) polar orbiters or have other heritages.  

Multispectral data have long since been available both from polar orbiting and geostationary 

satellite sensors and used for retrieving cloud properties. The relevant channels for cloud 

characterization were part of the payload of the polar satellites, while the sensors at 

geosynchronous altitude were almost exclusively devoted to VIS-IR operational monitoring of 

precipitation system displacements. This has considerably changed in the past few years since 
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more and more sophisticated sensors have been conceived for the GEO orbits that will allow for 

global real-time cloud characterization.  

Cloud radiative properties at VIS, near IR (NIR) and IR wavelengths have long since been studied 

and documented (among others Arking and Childs, 1985; Cheng et al., 1993, Saunders and Kriebel, 

1988; Slingo and Schrecker, 1982). In the thermal IR the radiative properties are sensitive to the 

size distribution of the hydrometeors. In particular, an increase in the particle size increases the 

transmissivity, decreasing the reflectivity and increasing the emissivity of the cloud layer. This 

latter dominates at these wavelengths. In the NIR (e.g. the 3.9 mm MSG channel) the emissivity 

of a cloud layer is lower than in the thermal IR window: there is a large contribution of reflected 

radiation at the cloud top. Clouds with small hydrometeors scatter and reflect much of the 3.9 mm 

radiance. An increase in cloud particle size or the presence of large drops or ice crystals near the 

cloud top reduces the 3.9 mm reflectance from the cloud. containing more ice reflect less solar 

radiation in the 3.7 - 3.9 mm range as ice strongly absorbs at these wavelengths and ice crystals 

are generally larger than cloud droplets at cloud top. NIR reflectance mostly refers to cloud 

particles effective radius (re).VIS reflectance is primarily due to cloud optical depth. 

Several methods have been proposed for the retrieval of cloud parameters from various cloud 

types. Pioneering studies were conducted by Arking and Childs (1985) and Nakajima and King 

(1990). Water Vapor images show the presence of water in the gas form between 22,000 and 35,000 

feet above the earth's surface. The brighter white color indicates areas of moisture. Black depicts 

neutral. Lensky and Rosenfeld (1997) have conceived a multispectral rainfall estimation technique 

based on the method of Rosenfeld and Gutman (1994). They concentrated on areas of around 2000 

km2 that Rosenfeld and Gagin (1989) showed to be the critical limit beyond which a further 

increase in cloud cluster area does not result in higher rain rates.  

IR and NIR channels other than the thermal IR window show some potential for application to 

rainfall estimations. Techniques for the instantaneous delineation of convective rainfall areas using 

split window data were initially conceived for the NOAA AVHRR (Inoue, 1987a,b, 1997) and are 

instrumental for the detection of semi-transparent cirrus clouds (Inoue, 1985). These techniques 

rely upon the detection of non-precipitating cirrus and low-level cumulus clouds using the two 

window channels at 10.5 - 11.5 and 11.5 - 12.5 µm (the so-called split window). The information 

content of the split window channels partially corrects erroneous rainfall area delineation (and 

consequent frequent rainfall overestimate) of simple IR techniques producing better false alarm 

ratios (FAR). The NIR 3.9 µm channel of GOES-8/9 satellites includes spectral features suitable 

for applications to rainfall detection and estimation. This channel was included for a long time in 

NOAA/AVHRR instruments (centered at 3.7 µm) for a variety of purposes including ice 

discrimination and sun-glint detection. Vicente (1996) developed a simple and fast algorithm for 

rainfall retrieval using the 11 and 3.9 µm channels with the obvious advantage of nighttime use 

and sensitivity to the presence of ice and water vapor.  
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In the present ATBD document the description of the scientific algorithms which will be developed 

and used to estimate rainfall from two of the standard operational algorithms of NOAA from the 

data acquired by the Very High Resolution Radiometer (VHRR ) onboard INSAT-3D satellite. 

VHRR produces images in six spectral channels, in the Visible (VIS), Near Infra-red (NIR), Mid 

Wave Infra-Red (MWIR),  and Infra-Red (IR) part of the spectrum covering the following 

channels: VIS 0.6μm,  NIR 1.6μm, MWIR 3.9μm, WV 6.7μm,   IR 10.8μm, IR 12.0μm . Each 

channel of the Imager has different resolution as mentioned in the Table-1 in sections ahead. 

15.2.2. Objectives 

There are two main objectives under the rainfall retrieval algorithms from INSAT-3D.. These 

techniques are now known as GOES Precipitation Index (GPI) and INSAT Multispectral Rainfall 

Algorithm Technique (IMSRA). Both the algorithms are state of art and aimed at estimation of 

rainfall with different applications at different spatial and temporal requirements respectively. First 

GPI related objectives are the implementation of the algorithm following Arkin (1979), while the 

second one is related to the development of the algorithm named GMSRA following Ba and Gruber 

(2001). Originally the GPI technique has been in operation for a large scale rainfall estimation by 

National community for more than two decades. The IMSRA on the other hand is a new one and 

is developed  

The inherent limitations of optical channels remains persistent for rainfall retrieval as the rainfall 

in the ground is inferred by cloud top signatures only. There is no direct physical connection 

between the rain/cloud and ice hydrometeors within the clouds with radiance emanating from 

cloud tops to the sensor. The accuracy of rainfall estimate is improves only marginally even with 

significant new efforts. However, the high spatial and temporal coverage of Geostationary optical 

measurements is the very strong point along with the resolution capabilities of the sensors. At the 

same time microwaves have a direct physical connections with vertical structure of rainfall and 

thus with the cloud, rain and ice hydrometeors. But the non-portability of microwave sensors to 

the geostationary platforms till date due to technological constraints is a limitation and thus only 

low earth orbiting satellites can provide the rainfall information of land, ocean and atmosphere as 

on now. With the advent of active and passive radar and radiometric sensors onboard a single 

satellite (e.g. Tropical Rainfall Measuring Mission-TRMM) we envisaged that a technique like 

GMSRA can be further improved for Indian tropical regions and more reliable rainfall information 

can be retrieved. We henceforth call this technique as INSAT Multispectral Rainfall Algorithm 

(IMSRA), as a specific technique for Indian Tropical regions. Our objectives for both the 

techniques (GPI and IMSRA) here are based on these premises and are outlined below (mainly in 

cases of IMSRA). 

A1. INSAT-3D Rainfall using  GPI Method: 

1.  To generate  a total day rainfall maps using 3 hourly brightness temperatures of IR (11 um) 

images for 1.0 x 1.0 deg  latitude /longitude boxes in an area -500 to +500 lat and 300E to 1300E 

using Arkin’s GPI method. 
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2. To generate mean spatial variance and histogram of 24 classes of temperatures at 1.0 x 1.0 deg  

latitude/longitude. 

 3. To derive QPE based on  daily basis following the 3 hourly data of IR observations (8 images 

a day). 

 4. Validation of rainfall products using rain gauges and Doppler Weather Radar data. 

 5 . Inter-satellite comparison using other contemporary satellites like Meteosat, NOAA etc.  

 6. Estimation of rainfall on pentad, monthly mean, seasonal mean and annual mean scales after 

due calibration/validation from radar and inter-satellite comparisons as above, rainfall. 

A2. To Develop Precipitation Estimates Using the Multispectral Rainfall Algorithm (IMSRA) 

Technique: 

The relation between precipitation amount and cloud fraction as seen from satellite passive 

radiometers in case of GPI technique above, though simple and straightforward it might seem, has 

not yet reached completely satisfactory accuracy, effectiveness, and time/space coverage. There 

are numerous applications in meteorology and hydrology where accurate information at scales 

smaller than the existing  1.0  products (e.g. daily or sub daily estimates at resolutions of 1  and 

down to the 0.10 0 and pixel scales) would be invaluable. There is also increasing demand from 

the meteorology and climate community for such products over extended periods. High-resolution 

rainfall information is available for limited areas using combinations of ground-based radar and 

dense networks of rain gauges. In India in particular, where the need of high spatial and temporal 

rainfall is essential, for large and varied areas of India (Western Ghats, plateaus, Himalayan 

Regions, North-Eastern Regions, Arid and Semi-Arid Zones) however, the in-situ infrastructure 

necessary for this form of precipitation monitoring network is not in place.  Recent developments 

mostly refer to microwave (MW) sensors on board polar orbiters, but the use of visible (VIS) and 

infrared (IR) sensors of geostationary satellites for a variety of applications is by no means over. 

Thus a suit of both supplementing each others would be the ideal situation, particularly when the 

highly advanced microwave sensors data from various international satellites are available on near 

real time basis.   

The main objectives here in IMSRA algorithm are to estimate rainfall by developing a 

Multispectral Rainfall Algorithm which is an optimal combination of GMSRA and some of the 

innovative proposed approaches that utilizes microwave remote sensing measurements from polar 

orbiting satellites. Here, the rainfall algorithm is with more advantageous that combines satellite 

passive microwave and infrared (IR) data to account for limitations in both data types. Rainfall 

estimates are produced at the high spatial resolution and temporal frequency of the IR data using 

rainfall information from the PMW data. Over the last few years, a number of groups world wide 

have embarked on development of such techniques wherein the advantages of geosynchronous 

viz.  vast  coverage   and  near  sufficient  space-time  sampling,  and  polar  passive  microwave 

radiometers  viz.  more  physically  based retrievals,  are  synergistically  used  to 
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generate    tropical  rainfall  on  various  scales (e.g. Adler et al. 1994, Todd et al. 2001, Gairola 

and Krishnamurti 1992). With above background the objectives for Multi Spectral Rainfall 

Algorithm (IMSRA) are as follows. 

The technique has the  following components: 

1. Identify  areas for very deep convective cores from IR and WV channels ( 11m-6.7m), 
which corresponds  well with rainfall. 

2. To screen mid-to upper level clouds with or without thin cirrus above the rain and non-rain 
baring clouds. 

3. Cloud growth classification based  on temporal gradients  of TIR – TB’s. 

4. Filtering of low and non raining clouds along with the warm and semi-transperent clouds 
based on IR and WV  when rainfall is estimated for clouds having brightness temperatures 
colder than 240K. 

5. Spatial and temporal co-location of INSAT-TIR brightness temperature, and TRMM / 
SSM/I rainfall for creation of matched database. 

6. To compute instantaneous rain rate using pre-calibrated rain rate for cloud top brightness 
temperature (11 m) for each pixel classified as containing raining clouds along with 
Satellite Microwave Radiometric measurements (e.g TRMM Microwave Imager-TMI). 

7. The global bias correction based on a polynomial model of the suitable form designed on 
the basis of comparison with TRMM-3B42 daily average rain (June and July). 

8. The orographic correction is based on the climatological ratio bias between IMSRA and 
TRMM-3B42 for the orographic regions (Mahesh et al., 2014). 

9. Cloud growth/decay correction based on the study of Mahesh et al., 2014 and Woodley , 
Sancho and Vicente (1972) 

10. Validation of rainfall with Doppler Weather Radar data and fine tunning of  algorithm. 

11. Finally to estimate rainfall would be estimated in different spatial and temporal grid scales 
based on all the above components of the IMSRA algorithm. 

12. Estimation of daily merged rainfall products from both satellite based IMSRA and IMD’s 
national Rain Gauge data.  

15.3. Inputs 

15.3.1. Image and preprocessing data (Dynamic) 

The details for the required satellite data for both GPI and IMSRA are provided in following table: 
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Parameter Accuracy Source 

Radiometric and geometric corrected gray count 

values of TIR-1 channel (10.5) 

-- Derived from raw data by 

DP (data processing) 

Radiometric and geometric corrected gray count 

values of TIR-2 channel (11.5) 

- Derived from raw data by 

DP 

Radiometric and geometric corrected gray count 

values of VIS channel 

- Derived from raw data by 

DP 

Radiometric and geometric corrected gray count 

values of , WV channel (6.7) 

- Derived from raw data by 

DP 

Radiometric and geometric corrected gray count 

values of 3.9 mm 

- Derived from raw data by 

DP 

Gray value to brightness temperature conversion 

table 

0.3 K Derived by DP 

Geolocation file 1 IR pixel Derived by DP using 

Calibration Table 

 

 

15.3.2. Other Auxiliary data and Model Inputs 

In addition to satellite data from INSAT-3D, radar and rain gauge data, and atmospheric moisture 

products (integrated precipitable water and relative humidity from 500-mb surface) obtained from 

the IMD/Eta Model analysis are essential on required grid spacing in different temporal scales. 

The gridded rainfall data from Doppler Weather Radars are needed from IMD at every half hourly 

time interval on its original resolution grids that will be regridded as is required by the proposed 

grid resolution for GPI and IMSRA techniques. The rainfall from those DWRs, which will be well 

calibrated using an appropriate site specific Z-R relationship over Indian regional sites of the 

respective radar locations will be used for validation. In some cases one hourly rainfall from fast 

response rain gauges would be highly desirable particularly the areas where the DWR coverage is 

not at all there. Thus 1 to 3 hourly gauge-adjusted DWR rain rates, and hourly and daily gauge 

rainfall obtained from the IMD stations are important.  
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15.4. Algorithm Functional Specifications 

15.4.1. Overview: 

NOAA/NESDIS emphasizes use of meteorological satellites for the study of flash floods. Heavy 

precipitation and flash floods are often a multi scale and concatenating event from the global scale 

to the synoptic scale, to the mesoscale and finally to the storm scale.  Satellite-derived algorithms, 

conceptual models, and interpretation techniques are used to provide information on these various 

scales to monitor, assess, and predict heavy precipitation and flash floods. In the satellite data, 

global scale connections between the tropics and middle latitudes are observed.   These 

connections are movements, surges, or plumes of water vapor that are often associated with 

unstable air and prepare the environment for heavy precipitation and flash floods. On the synoptic 

scale, the 6.7 m water vapor is especially useful for detecting jet streaks, vorticity centers and 

other features that are associated with upward vertical motion and lift the moist, unstable air 

resulting in the production of clouds and precipitation.  Whether or not heavy precipitation and 

flash floods will occur are generally determined on the mesoscale to storm scale.  On the 

mesoscale, infrared (10.7 m and 3.9 m), visible, and water vapor (6.7 m) are used to locate 

boundaries (both frontal and thunderstorm-produced) and short waves that may initiate, focus, and 

maintain the heavy precipitation.  Terrain features such as orographic uplift have the same effect 

of anchoring, intensifying,  and prolonging the precipitation.   On the storm scale, the intensity, 

movement, and propagation of the precipitation system (e.g., thunderstorms) is used to determine 

how much, when, and where the heavy precipitation is going to move during the next zero to three 

Parameter Resolution Accuracy Source 

Doppler Weather Radar - 

Surface Rain 

 

Surface Rain Gauge on hourly 

basis (from Fast Response Rain 

Gauges, AWS ) and Total Day 

basis 

Original DWR 

grid resolutions 

 

      

70% as 

compared with 

ground based 

data 

DWR observations at 

IMD Sites (Every 1/2 

Hour,  

 

------ At IMD Sites ---

--- 

 

TRMM / GPM Rainfall 

1. Scan-mode 

Orbital data  

2. Grid mode 

0.10 X 0.10 data 

 

       From Internet Sites 
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hours (called Nowcasting).  High resolution infrared (10.7 m) and visible are the principal data 

sets used in this diagnosis.   

Large scale precipitation values are of importance in many fields and anomalies in large scale 

precipitation are also known to have a close relationship with global circulation anomalies. 

Satellite based rain estimation techniques can be classified into two broad categories, viz, (1) 

estimation of precipitation on near real time, e.g. Scofield and Oliver (1977), etc. and (2) estimation 

of average precipitation over a large area for a period of time ranging from a day to a month e.g., 

Richards and Arkin (1981) etc. In any of these two the estimation criteria is based on some 

statistical relationship. 

In case of GOES, data from five channels are used: the visible channel (0.65 mm), used when 

available to select optically thick clouds; channel 2 (3.9 mm), used to retrieve reff of hydrometeors 

during daytime; the water vapor channel (6.7 mm); and thermal channels 4 (11 mm) and 5 (12 mm). 

The 11 mm channel is used to determine cloud-top brightness temperature, and the 12-mm channel 

is used in conjunction with the 11-mm channel to estimate cloud-top temperature. The estimated 

cloudtop temperature is utilized to compute the thermal emission at 3.9 mm, which is then 

subtracted from measurements of that channel to yield the reflected solar radiation in the 3.9-mm 

spectral band. 

In the statistical relationship between IR cloud pixel brightness temperature from satellite sensor 

and surface rainfall measurements  the mean rainfall rate R varies as a function of brightness 

temperature (BT). But  the uncertainty in rainfall rate is quite large and also varies with BT.  The 

GPI method uses a simple two-piece threshold function approximation of this relationship  

Although crude, the GPI method works quite well for the estimation of monthly rainfall over large 

areas, partly because the over- and underestimation of spatial and temporal errors cancel each other 

in the aggregation procedure.  

Complete software package for derivation of QPE using Kalpana-1, INSAT-3D,3DR VHRR data 

from two important algorithms like GPI, and IMSRA has been attempted. Both of them are the 

operational at NOAA/NESDIS and has been developed after years of research and development 

efforts by various investigators. The theoretical background for GPI and GMSRA respectively are 

given below: 

15.4.1.1. Theoretical Background for GPI Algorithm:  

15.4.1.1.1 Physical explanation of rainfall with infrared (IR) images 

The satellite IR images are composed of measured radiant energy originating in the atmosphere or 

from the land and water surface below. The intensity of this energy integrated over all wavelength, 

by Stefan-Boltzmann law, is proportional to fourth power of temperature. The Stefan-Boltzmann 

law is valid for a perfect black body. If the medium emits spectral radiant energy according to 

some temperature less than its thermal temperature, than a second factor called emissivity is 

introduced. The emissivity of a body determine its emission efficiency. Thus, we can define 
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brightness temperature of a body Tb, which is related to its physical  temperature  T by following 

equation:   

Tb =  T 

where,  is emissivity of the object. If.  = 1, Tb = T, its a black body; if  = 0, Tb = 0, its a white 

body; if 0 <  < 1, Tb < T,  and its a gray body.  

The IR, for rainfall estimation, refers to thermal IR band that is 10.0 - 12.5 m. This is a 

atmospheric window, and all earthly objects radiate maximum spectral power in this band. In this 

band the absorption is strong for clouds and land/water surfaces and slight for gaseous constituents 

of the atmosphere. For surfaces, which are opaque and do not transmit radiation, measured 

intensity is closely approximated by the fourth power of the temperature. For those surfaces, which 

are not   opaque - such as some clouds - measured intensity is approximated by effective emissivity 

times fourth power of the temperature. This effective emissivity will be referred more often as 

cloud emissivity here after. The cloud emissivity   cannot be measured from observations at a 

single wavelength interval. Often it is simply assumed to be unity. Then the temperature calculated 

from observed intensity of radiation is called ̀ brightness temperature’. Only when  = 1, brightness 

temperature equals to black body temperature. 

The value of IR measurements to rainfall estimate lies in the nearly universal condition of lapse of 

temperature with height through the troposphere. If the temperature is known with height, either 

from actual sounding or from climatology, the height of the cloud can be infrared from the satellite 

IR observations. Ordinarily, gray clouds are not useful in this context, because  < 1 implies clouds 

which are thin (and therefore without precipitation). The more serious problem is distinguishing 

between cold clouds that are radiometerelly thick but are confined to the upper and middle 

troposphere, and cold clouds which extend into lower troposphere.  
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15.4.1.1.2 Flow Chart for QPE from GPI: 
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15.4.1.1.3. Operational Implementation 

Step 1 : Conversion from gray count to BT 

The INSAT-3D infrared thermal images of 0000, 03000, 0600, …., 2100 UTC, i.e., every 
three hours, are to be used. Infrared pixel has dimensions of 4x4 km in case of INSAT-3D, 
3DR, so that several pixels fall within 1.00x1.00 box. The grey shade value (0-1023) of 
each pixel in a given image is read and the corresponding brightness temperature is to be 
calculated from a look-up table. Pixel lying outside the chosen area of analysis are to be 
ignored while within it are assigned to appropriate box.  

Step 2: Histogram Generation: 

After the temperatures of all the pixels in a box are known they are to be distributed to 
generate 3 hourly 24 class histogram of brightness temperatures of IR (11 um) images for 
1.0 x 1.0 deg  latitude /longitude boxes in an area -50 to + 50 deg.  lat and 30 to 130 deg 
longitude from the sub-satellite point.  

Step 3: Grid-wise Statistics  

Generate 3 hourly mean and spatial variance of temperatures at 1.0 x 1.0 deg  

latitude/longitude within the area 40 deg lat/long from the sub-satellite point. 

Step 4: Grid-wise Rain Clod Detection: 

The fractional cloud coverage within a grid box is the ratio of the pixels of cooler than 
specified threshold temperature to the total number of pixels. This gives the measure of the 
fractional area of the box covered by clouds with tops colder than threshold. Finally the 
estimates of precipitation using the GPI technique in the grid spacing of 1.0 x 1.0 lat/lon 
will be carried out.  This work indicated a high correlation between the fractional coverage 
of "cold" clouds and observed rainfall. It was determined that the highest correlation 
between the parameters was produced using a 1.0 degree latitude/longitude spatial scale. 
An estimation method using linear regression was developed. The regression procedure 
yielded the simple estimation equation:  

R = [3 mm h-1] X [frac] X [hours]  

where R is the rainfall estimate in millimeters; frac is the fractional coverage of cloud-top 
temperature < 235K for the desired 1.0 degree latitude/longitude region; and hours 
indicate the number of hours in the observation period.  

Step: 5 Validations: 

Regarding the validation of the derived QPE the DWR and Surface Rain Gauges (SFRG) 
Data at different spatial and temporal scales will be highly desirable in and around the 
maximum validation sites in temporal window of every hour.  

Remarks: 

During the days when all the 8 images per day are not available, rain rate will be provided with a 
flag. Provisions of average rainfall estimation will be made for all the cases when  more than 50% 
of data is available. Similar approach will be followed with the Pentad or Monthly scale average 
rainfall estimates.  
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15.4.1.2.  IMSRA Technique:  

15.4.1.2.1. Theoretical Background: 

The developmental work related to the INSAT Multi-Spectral Rainfall Algorithm (IMSRA) 

proposed here as an inhouse R & D effort, originally follows the GMSRA approach along with 

innovative alternative  features (i.e. the satellite microwave  radiometric measurements) for the 

estimation  of precipitation.   The theoretical basis is that 

1. Bright clouds in the VIS and clouds with cold tops in the IR imagery that are expanding (in 

early and mature stages of development) produce more rainfall. 

2. Clouds with cold tops that are becoming warmer produce little or no rainfall. 

3. Merging of cumulonimbus (Cb) clouds increases the rainfall rate of the merging clouds. 

4. Most of the significant rainfall occurs in the upwind (at anvil level) portion of a convective 

system. 

5. Cloud micro-physics plays an important role in understanding the precipitation and thus 

effective radius of cloud top temperatures are to be known (say 3.9 mm during day time). 

6. For each pixel classified as containing raining clouds based on above criterions, the 

associated instantaneous rain rate will be computed using pre-calibrated mean rain rate and 

cloud top brightness temperature relationship based on the equation developed using al 

large data base of IR-TBs and TRMM-Precipitation Radar data (Gairola et al. 2010b) The 

retrieved rainfall from earlier step and  Doppler Weather Radar data on available locations 

in India would be used for offline validation of the algorithm. This will be based on the 

large collocated data base of DWR and IMSRA rainfall within 0.1x0.1 deg resolution. 

7. Production of rainfall maps on every half hourly and daily basis on pixel scale with option 

for higher grid spacing. 

 

Several such features are integrated in finalizing the estimation of rainfall using measurements 

from mult-spectral channels (Vis, IR, WV and microwave etc.). Physical explanation of rainfall 

with infrared (IR) images have been discussed previously which is common for GPI algorithm. In 

addition the Physical explanation of rainfall with visible (vis) images is being presented here in 

brief. Various researches so far have pointed that that with thicker clouds the probability of rainfall 

and rain intensity is increased. This relationship is strongest for clouds warmer than -15° C. It is 

also noted that marine clouds produce heavier rainfall. The possible explanation for this lies in the 

process of cloud growth and droplet growth rates. In clouds warmer than -15° C, precipitation 

results from coalescence. The large cloud thickness allows more time for growth before droplets 

fall out of the cloud. However, the other factors like droplet concentration, evaporation and cloud 

temperature are also important. Differences in precipitation probability between marine and 
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continental clouds were attributed to difference in concentration of condensation nuclei and of 

droplets, and difference in evaporation below the cloud base.  

Satellite passive microwave and more recently, active microwave rain radar are able to provide 

accurate estimation of rain rates. However they are known to have  but poor temporal sampling. 

Again the estimates from polar orbiting satellites are subject to the bias  in regions where diurnal  

cycle of rainfall is pronounced. Still the instantaneous measurements of rainfall from microwave 

sensors are more accurate and thus are useful in calibrating other sensors like visible and IR.   At 

present, the algorithms for the quantitative estimation of rainfall from microwave observations are 

quite successful but suffer from a scarcity of sufficient verification data over the oceans. 

Theoretical and empirical studies addressing the problem of rain  retrieval and their critical 

assessment continues to appear.  A definitive algorithm is contnuously in developing stage because 

of the complex and variable microphysical and mesoscale  structure of precipitation vis-à-vis 

coarser resolution of microwave sensors.  As a source of microwave measurements, we use the 

rainfall data from the SSM/I Defense Meteorological Satellite Program  (DMSP). Several 

algorithms have been developed for various SSM/I sensors of the DMSP series. The SSM/I rainfall 

used here is based on Ferraro and Marks (1995). The SSM/I had a conical scan with a swath width 

of about 1400 km and TRMM has swath width of about 800 km and the rainfall is retrieved by 

NASA-GPROF (Goddard Profiling) algorithm. Use of microwave data with those of VI/IR is most 

plausible choice to mitigate the problem of resolution in microwaves and augmentation of rain 

estimates from IR measurements.  

Following the main features of Ba and Gruber (2001),  from GMSRA, IMSRA is thus proposed  

in combination with additional satellite microwave measurements. Thus the principal innovations 

of IMSRA relative to previous infrared/visible algorithms alone is that it combines several cloud 

properties used in a variety of techniques in a single and comprehensive rainfall algorithm.  

However our recent sensitivity study has suggested that the environmental correction factor 

(PWRH) is more suitable for larger scale rainfall (such as in GPI within 10 x10) than for (IMSRA 

within or less than 0.10x0.10).  This factor now has not been invoked on IMSRA algorithm any 

more. 
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15.4.1.2.2 IMSRA Algorithm 

Fig. 2 Flow Chart for IMSRA Algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

15.4.1.3 Modified INSAT-3D Rainfall IMSRA scheme: 

So far the IMSRA, that has been working as an operational algorithm at IMD combines mul-

tispectral optical measurements of the satellites to estimate rainfall along with the additional 

satellite microwave measurements. Thus the principal innovations of IMSRA relative to previous 

infrared/visible algorithms alone is that it combines several cloud properties used in a variety of 
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cloud-top temperatures as a basis of rain estimation (e.g., Arkin and Meisner 1987; Ba et al. 1995; 

Vicente et al. 1998), and it utilizes the effective radii of cloud particles (e.g., Rosenfeld and Gutman 

1994) and spatial and temporal temperature gradients (e.g., Adler and Negri 1988; Vicente et al. 

1998) to screen out nonraining clouds. The algorithm have the number of steps which are already 

encorporated and described in Gairola et al. (2007).   

Based on a number of case studies and research works carried out during last few years, some 

more innovative elements are recognized for further refinements of the algorithm. In this regard, 

a three –tier correction scheme is designed for IMSRA algorithm based on the intercomparison 

with TRMM-3B42 rainfall estimates. The Procedure adopts an overall correction of rain followed 

by corrections for orography and cloud growth/decay correction based on the study of Woodley , 

Sancho and Vicente (1972).  Finally to further refine the IMSRA rainfall estimates   the synergistic 

use of INSAT-3D derived IMSRA rainfall and rain gauge data from IMD is proposed based on the 

objective criteria. 

 Here the the original IMSRA algorithm has been retained as it is, except the environmental 

correction factor module has been dropped as it is adding more errors due to different decorelation 

lengths of rainfall and relative humidity & precipitable water. The flowchart of the modified 

algorithm is given in Figure 3 where recent developments have been added to the original scheme 

in above flowchart Figure 2, tested and implemented in many case studies by Mahesh et al. (2015). 

The global bias correction based on a priory data base is followed from a polynomial model of the 

form y=∑  ai xi
, i=0...2 and the orographic correction is based on the climatology and using an 

elliptical weighting function (Mahesh et al., 2014). The global bias correction is designed on the 

basis of comparison with TRMM-3B42 daily average rain (June and July). The average bias 

between the rain estimates of TRMM-3B42 and IMSRA rain is absorbed into a polynomial model. 

Orographic correction is computed on the basis of a climatological ratio bias between IMSRA and 

TRMM-3B42 for the orographic regions. It is applied as a symmetrically reducing elliptical 

weighting function of the form 

W= (A2 -  S2) / (A2  + S2 – 2LF2)       

     A= d1 + d2 where d1 and d2 are the distances from the end points of a line with two foci as the 

ends and A is the length of semi major axis. LF is the distance between two foci. S is the sum of 

Euclidean distance calculated for every point from the two foci. The graphical representation of 

the function is given in figure 4. 
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Figure 3 : Flowchart of the proposed Modified IMSRA scheme 

 

Figure 4: contour plot of elliptical weighting function 
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The cloud growth correction takes two consecutive IR images and makes rain/no rain distinction 

based on the studies of Woodley and sancho (1971), Vicente et al. (1998) and Mahesh et al. (2014). 

It was observed that expanding clouds or clouds with cold tops that are becoming colder increases 

the rainfall rates and decaying clouds or clouds with cold tops that are becoming warmer produce 

little or no rainfall. Under this assumption, cloud growth correction factor is applied to discriminate 

rain/no-rain situation. The correction factor is 0 when the cloud is becoming warmer and as 1 when 

the cloud is becoming colder.  

15.4.1.4 Case Study 

Figure 5 shows the spatial comparison of rainfall estimates based on present IMSRA and after 

correction with TRMM-3B42 on 15 July 2014. The comparison suggests that the over estimation 

tendencies of IMSRA algorithm has reduced considerably by the correction scheme: central Indian 

region and the Bay of Bengal region shows the improvement in the improved version. Orographic 

regions also show significant improvement by the application of IMSRA correction scheme and 

the inherent under estimation tendencies have reduced in corrected version of IMSRA.  

(a)

 

(b) (c)

 

Figure 5: Intercomparison of average daily rainfall estimates (mm h-1)on 15 July 2014 from (a) 

TRMM-3B42 (b) Operational IMSRA (c) IMSRA after correction scheme 

15.4.1.5 Preliminary Statistical Comparison with TRMM-3B42 

Preliminary validation of IMSRA rain estimates before and after correction is carried out from 

june to august 2014. The results are presented in figure 6. The density plots suggest that operational 

IMSRA has in general over estimation tendency with respect to TRMM-3B42, which is improved 

by the correction. The statistics of the same is given in table -1. Comparison suggest that 

correlation has improved from 0.64 to 0.67 and rmse has reduced from 0.46 mm h-1 to 0.36 mm h-

1. The statistical comparison over the orographic region is shown in table-2 the correlation has 

improved from 0.53 to 0.68 and rmse has reduced from 1.01 mm h-1 to 0.87 mm h-1. 
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(a)  (b)  

Figure 6: Density plots of average daily rainfall estimates (mm h-1) for June-august 2014 for (a) 

IMSRA (b) IMSRA after applying correction scheme 

Table1: Statistical comparison of average daily rainfall estimates mm h-1 (June-Aug,2014) 

 Existing  Improved  

Correlation 0.64 0.67 

RMSE 0.46 0.36 

Bias 0.04 -0.01 

No of Points 10299330 10299330 

Table2: Statistical comparison of average daily rainfall estimates over orographic region  

 Existing Improved 

Correlation 0.53 0.68 

RMSE 1.01 0.87 

Bias -0.42 -0.25 

No of Points 28999 28999 

 

15.4.1.6 Operational Implementation Steps for QPE from IMSRA 

Step 1 : Conversion from gray count to BT: With the calibration and geolocation information 

the raw counts are to be converted into the brightness temperatures at different pixel locations 

respectively.  

Step 2: Cloud Classification (Deep Convective (DC), DC with/without thin Cirrus (DCC), Mid 
to upper level clods with/without thin Cirrus using an IR and WV  channels. This threshold 
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based cloud classification is provided in detail by Inoue (1987) and Roca and Ramanathan 
(2000). 

Step 3: Grid Average  of  IR TBs (0.10x0.10) to match with microwave rainfall from TRMM   

(i.e. collocation of KALPANA-IR-TBs and TRMM rainfall applied to the INSAT-3D-IR-TBs 

based on histogram matching technique). 

Step 4: Calibration of IR brightness temperatures with the contemporary microwave 
radiometric measurements of rainfall (e.g. TRMM Rainfall from NASA’s GPROF algorithm). 

Step 5: The global bias correction based on a polynomial model of the suitable form designed 
on the basis of comparison with TRMM-3B42 daily average rain (June and July). 

Step 6: the orographic correction is based on the climatological ratio bias between     

       IMSRA and TRMM-3B42 for the orographic regions (Mahesh et al., 2014).  

Step 7: Cloud growth/decay correction based on the study of Mahesh et al., 2014 and  

Woodley , Sancho and Vicente (1972) 

Step 8. Validation and fine tuning of the algorithm based on IMD’s DWR and AWS and fast 
response rain gauges on hourly basis. 

Step 9. Processing of the data for the different temporal scales (Half hourly, daily, weekly, 
monthly and seasonal etc.) based on the above steps of the development and validation of the 
algorithm. 

15.5 Outputs 

Parameter Unit Min Max Accuracy Resolution 

QPE (GPI) 

Histogram of BT’s  

Daily, Weekly, 

Monthly & seasonal 

rainfall 

mm 

 K 

mm 

0 

 < 180 K 

 0 

72 mm/ day 

> 280 K 

72 mm/day 

   TBD 

   24 Class   

    TBD 

1 x 1   

1 x 1  

1 x 1 

QPE (IMSRA) 

 

½ Hourly, 3 Hourly, 

Daily, Weekly, 

Monthly & Seasonal 

rainfall 

mm     

 

mm 

0 

 

0 

 TBD 

 

TBD 

 TBD 

 

 TBD 

4 km x 4 km 

(TIR Resol.) 

   -- do  -- 
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Format of the output 

Basic format would be to obtain QPE on a give domain with geolocation, and rainfall  values. 

However, the QPE would  be represented in various shades, contours and with        desired color 

coding thereof. The 24 class histogram also will be generated.          

Domain :  For both GPI and IMSRA the domain for rainfall estimation mainly would be 400 

S to 400 N, 300 E to 1300 E. 

15.6. Validation 

Rainfall products from the operational algorithms are to be obtained from two different methods 

mentioned above. These are required to be used for many diverse meteorological, climate, 

hydrological, agricultural, and other applications. It is therefore important to have an idea of their 

accuracy and expected error characteristics. This is done by validating the satellite precipitation 

estimates against "ground truth" from rain gauge and radar observations. A thorough verification 

of satellite-based precipitation products should quantify their accuracy in a wide range of weather 

and climate regimes, give users information on the expected errors in the estimates, help algorithm 

developers understand the strengths and weaknesses of the satellite rainfall algorithms. To get good 

estimates of absolute accuracy satellite products are verified against very high quality radar and 

gauge data. However, these sites are only few in number. To get estimates of regional and spatial 

accuracy it is necessary to use a much larger quantity of data, for example, from national rain 

gauge networks. While these verification data are less reliable than those from high-quality sites, 

their errors are usually much smaller than those associated with the satellite estimates, at least on 

short time scales. For validation of QPE with the ground truth on different temporal and spatial 

scale are required mainly with the data of DWR and Rain Gauges. 

Finally the retrieved rainfall from earlier steps and  Rain gauges and Doppler Weather Radar data 

on available locations in India would be used both for calibration and validation of the algorithm. 

The error analysis will be carried out and accordingly the algorithm will be fine tuned. A complete 

error statistics (regression, correlation, RMSE, BIAS, Mean, Standard Deviation etc.) will be 

performed for the desired period (validation period of about 3-4 months). 

Rainfall maps on every 1/2 hourly and daily basis on pixel and any desired bigger grid spacing 

will be produced with all provisions to have maximum possible information (like contours, color 

shades, statistical information etc.). Based on this algorithm QPE on  daily, pentad,  monthly mean, 

seasonal mean and annual mean will be produced. The capability of to derive QPE from IMSRA 

over meteorological subdivisions will be attempted along with Image Analysis System Group. 

Accordingly the algorithm will be made operational after due testing and validation. 
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15.6.1. Data Required:  

The following data for validation will be needed  

Parameter Resolution Source 

Doppler Weather Radar  

0.100x0.100  

IMD - at all DWR 

locations (Every 1/2 

Hourly basis 0.10x0.10 

grids 

Fast Response Rain Gauges 

(for hourly rainfall) & 

Other Rain gauge Data 

Rain/day 

Ground Truth (over land and 

oceans) point observation 

IMD - At all Daily 

observation sites and to 

plan for oceanic locations 

 

Total Water Vapour 

 

Relative Humidity 

0.5 X 0.5 deg 

 

0.5 X 0.5 deg 

3-6 hourly Eta /IMD  

Model Analysis from 

IMD, (500 mb to surface) 

 

TRMM Analysed Data 

GPM-IMERG data 

 

Orbital and  

½, 3 hourly 0.10x0.10, -

0.250x0.250 and 10 X 10 

Data available through 

internet  

15.6.2. Method of Validation: 

Currently pulsed Doppler technique are applied in weather radars to map severe storm reflectivity 

and velocity structure with great success in showing in real time the development of cyclones 

providing quantitative measure of intensity, track and information on winds within and around the 

storm. By studying the characteristics of radar returns and analyzing the variations in their 

amplitude (or power received) , phase or frequency shift or change in polarization state, DWR 

quantifies the different characteristics of the precipitating medium within the pulse volume. The 

amount of received power from the distributed target depends on the number of particles within 

the pulse volume of the beam, their size, composition, shape, orientation etc. 

 The DWR’s are located at various sites all over the country. All are working operationally.  DWR’s 

estimates 3 base products namely Reflectivity (Z), Velocity (V) and Spectrum Width (W) as a 

function of range. From these base products, advanced data products are required to be generated 

to meet the validation needs. 

Ground-based radar and gauge rainfall observations (from IMD, ISRO’s AWS etc), at high 

resolution (hourly), are thus required to be used for validating rain  product. High resolution IMD 

DWR products (hourly 4 Km x 4 Km) is required for evaluation over several small size study sites 

with hourly (daily when hourly is not available) rain-gauge density, for instance in 1°x 1° degrees. 

The size of every validation study site varies from 0.5°x 0.5° to 2°x 2° degrees, depending on the 

density and distribution of available hourly rain-gauge stations over the study site and horizontal 
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rain extents. In case of proper validation of GPI rainfall in particular, which is for a grid size of 

1.00 x1.00, there should be minimum 3 rain gauges (IMD or AWS) to average out for comparison 

within a GPI grid size. For IMSRA, an hourly, and  daily DWR and rain gauge information would 

be required on routine basis, preferably in 0.250x0.250 or atleast in 0.5°x0.5° grids.  

Pre-launch Field Experiments 

Pre-launch validation campaign were launched earlier for existing Kalpana, INSAT-3A based 

rainfall algorithms as a prelude to INSAT-3D, 3DR. A three months period will be selected (mainly 

rainy season) for collecting data from DWRs, all possible and quality assured rain gauges and the 

algorithm will be tested. 

Post-Launch Special Field Experiments 

Many of the present ground-truth observations data networks are being augmented  for the 

measurements of precipitation on ground. This includes the plans of IMD to put more DWR in 

various Indian regions. However, the existing ground based data sources will be utilized for the 

INSAT-3D Imager derived  rainfall estimates. Some more details of the validation campaigns 

(timing, location, instrumentation, etc.) will be decided later in mutual consultation with IMD. 

15.7. Merged Rain Products (IMSRA and Rain Gauges): 

To merge in situ rainfall data from the AWS rain gauges with INSAT-3D derived IMSRA rainfall 

estimates, one of the simplest and state-of-the-art techniques, called the successive correction 

method (Cressman, 1959; Thiebaux and Pedder, 1987) has been found suitable enough for 

objective analysis,. It involves the successive modification of satellite rainfall estimates based on 

observed rain gauge rainfall data. The objective analysis scheme benefits from the relative 

advantages of satellite and in situ data. In this method, the background field is corrected by the 

observed values iteratively during several analysis scans until the correction between the 

interpolated value and actual observation converges (Gairola et al. 2015). The interpolated weights 

are computed using the distance-dependent scheme and the correction (C) (Cressmaqn 1959) is 

done using the following equation: 

C = ( ∑W (P0 – Pp)) / N   (1) 

where Po is rainfall at the observation point, Pp is the interpolated grid point data at observation 

point, N is the number of observations, and the weight (W) is given by 

   W= (R2 – d2) / (R2 + d2) for d2 ≤  R2 

           = 0 for d2 > R2   (2) 

where R is the radius of rainfall influence and d is the distance of the in situ data point from the 

grid point. The appropriate radius of rainfall influence is determined by the spatial autocorrelation 

analysis of daily IMSRA derived rainfall data. In recent study by  Gairola et al. 2015), the objective 

analysis applied for rainfall estimates show noticeable improvement over the satellite-based 
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rainfall estimates. Comparison with independent rain gauge observations shows a considerable 

improvement in terms of correlation, bias and root-mean-square error after objective analysis, 

especially over the regions where density of rain gauge is fairly good. Overall results reveal that 

the synergistic use of satellite and in situ observations has potential for more accurate rainfall 

estimations over the Indian monsoon region. 

Flow Chart for Merged Rain Products (IMSRA and Rain Gauges) 

 

 

 

 

 

 

 

 

 

   

Fig. 5. An example of Distributions of daily-accumulated rainfall (mm) over the Indian monsoon region 

derived from IMSRA, merged-IMSRA, and TMPA-V7 for August 6, 2010. 

 

15.7.1. Major Conclusions 

 The overestimation tendencies of IMSRA Rain can be considerably reduced by new scheme 

(Cloud growth & global bias correction). 

 Orographic region shows significant improvement by the climatological orographic bias 

correction. 

 Finally the merged rainfall over India from IMSRA and surface rain gauge data shows the 

IMSRA Rainfall (from Flow 

Chart in Fig 3) 

Objective Analysis Daily National Rain 

Gauge Data 

Merged Daily Rainfall 
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improved rain estimates at a 0.1º latitude × 0.1º longitude spatial resolution.  

 While the modified IMSRA rain products will be available after every half hourly, the merged 

products will be generated every next day for daily rainfall subject to the availability of rain 

gauge data from IMD. 

15.8. Future Scope 

Due to the heterogeneity of precipitation over the Earth’s surface it is important that corrections 

be applied time to time to the algorithms depending on region specific processes. Conventional 

means are restricted primarily to certain-land regions, and although satellite measurements are now 

commonly available, these have limitations too. Frequent observations from visible (VIS) and 

infrared (IR) sensors are hindered by the fact that estimates of precipitation are indirect and 

therefore prone to errors caused by cloud-top to surface rainfall variations. More direct 

measurements of precipitation through the use of passive microwave (PMW) instruments are 

somewhat restricted due their relative infrequent sampling of precipitation. Thus the algorithms 

for merging of microwave data with IR images to generate rainfall rates at the spatial and temporal 

resolutions of the IR sensor is highly desirable. The combined approaches can improve rainfall 

estimates using the temporal sampling of the VIS/IR data and the more direct nature of the 

microwave estimates, avoiding the mentioned weaknesses and re-inforce the mutual strengths. At 

present we have proposed to use Geostationary optical channels and low earth orbiting microwaves 

for the rainfall estimation by their inter-calibration process and finally validations with the ground 

truth. In future this approach can be further advanced by optimally integrating optical and 

microwave measurements by proper data assimilation schemes which will provide better rainfall 

than any of the sensors (optical, microwave and ground truth) alone. 

In future sensitivity studies could be made to estimate rainfall over the Indian monsoon region by 

the synergistic use of the geostationary INSAT-3D -derived IMSRA rainfall estimates and rain data 

from GPM Microwave Radiometer (GMI), using a suitable objective analysis method. This will 

benefit from high spatial and temporal resolutions of the geostationary satellite and infrequent but 

more accurate microwave based rainfall estimates.   
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16. MIR Reflectance 
 

S.No.  Product Name  Spatial Resolution  Temporal Resolution  

1  3DRIMG_MIR_REF  4 km x 4 km  30 minutes  
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16.1. Algorithm Configuration Information  

16.1.1. Algorithm Name  

MIR Reflectance (MIR_REF)  

(Ref : IMD RFP  )  

16.1.2. Algorithm Identifier  

3DRIMG_MIR_REF  

16.1.3. Algorithm Specification 

 

Version  Date  Prepared by  Description  

1.0  24.02.2018  Shailendra S. Srivastava 

and Nitesh Kaushik 

MIR Reflectance 

Baseline Document  

 

16.2. Introduction 

This document describes the land surface reflectance retrieval algorithm for the MIR spectral band 

(3.8-4.0 µm) of Imager sensor of INSAT-3DR. MIR reflectance consists of both reflective  and 

emissive parts. Previous studies have shown that, full radiance (reflective and emissive) can not 

be used for the studies involving global studies, where temperature gradients are due to the 

latitudinal/topographical variations. We remove the emissive component using the brightness 

temperature computed from the 11 µm channel and making simple assumptions about the 

emissivities and transmittivities in both the channels, i.e. MIR and 11 µm. These assumptions are 

found to be conservative in the expected range of temperatures(T > 290 K). More appropriate 

values of emissivities and transmittivities would be adopted in the subsequent version of the 

algorithm, which would evolve with time and experimentation. This algorithm is analyzed through 

the comparison with the collocated and synchronous MODIS/METEOSAT surface reflectance 

products.  

16.2.1. Overview and background 

Mid-IR channel on Imager can be utilized for the detection of dark dense vegetation, burned areas 

etc., which can be used for land use/cover dynamics related studies. Red and NIR channels are 

traditionally used for detecting burned areas. However, these channels are highly affected by the 

aerosol scattering and absorption caused by the biomass burning (Kaufman and Remer, 1994), and 

hence affects the values of NDVI (Normalized Difference Vegetation Index). MIR part of the 

spectrum is also sensitive for the changes in the state of the vegetation (due to active chlorophyll 

associated with liquid water in the leaves), but it is virtually unaffected by the presence of most of 

the types of aerosols (except dust). Monitoring the MIR reflectance can help to study the vegetation 
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cover more reliably. However, MIR reflectance should be used with caution for the studies 

performed over global scales, only reflected component of the MIR should be utilized (Libonati et 

al., 2010). The emitted component of the signal may not represent the intrinsic properties of the 

surface. We remove the emissive component using the brightness temperature computed from the 

11 µm channel of INSAT-3DR and making simple assumptions about the emissivities and 

transmittivity in both the channels, i.e. MIR and 11 µm.  

16.2.2. Objective 

The main objective of this document is to briefly present the algorithm to generate surface 

reflectance (only reflective component) for the MIR band of INSAT-3DR Imager. 

 

16.3. Inputs 

16.3.1. Static data 

Parameter  Resolution  Quantization  Accuracy  Source  

     

 

16.3.2 Image and pre-processing data (Dynamic)  

The following table gives a list of inputs required for algorithm input and calibration: 

Parameter  Resolution  Accuracy  Source  

Radiometric and geometric  

corrected gray count values  

of MIR channel (3.9µm)  

pixel  --  Derived from raw data by 

DP (data processing)  

Radiometric and geometric  

corrected gray count values  

of TIR-1 channel (11µm)  

pixel  --  --do-- 

Solar Zenith Angle pixel  --  --do-- 

Solar Azimuth Angle pixel  --  --do-- 

Satellite Zenith Angle pixel  --  --do-- 

Satellite Azimuth Angle pixel  --  --do-- 

WV 0.5̊ X 0.5 ̊ --- Forecast  
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16.4. Algorithm Functional Specifications 

 16.4.1. Overview  

1.4.1.1 Theoretical Background  

In the thermal infrared spectral region and in the day time observations, thermal emission and solar 

reflection are in the same order of magnitude (Petitcolin & Vermote, 2002). Assuming cloud free 

atmosphere under local thermodynamic equilibrium, the sensor measured MIR radiance IMIR is 

given by the following equation (A.-L. Li et al., 2013):  

)1(),(),(),(),(),( 



scatMIR RRRI  

Where, R is attenuated (by atmosphere) radiance from the ground (path 1 in the following figure), 

τ is the transmittance of the atmosphere. The second term on the right hand side, Rat↑ is the upward 

atmospheric thermal radiance (path 2 in the figure), and Rsc↑ Is the upward solar diffusion radiance 

resulting from atmospheric scattering of the solar radiance (path 3 of the figure). R can further be 

decomposed in the following equation (path 4 to 7 in the figure).  

 

)2(),()cos(),,,(
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


 

εB(Ts) represents the radiance emitted by the surface due to its physical temperature (Ts), and its 

emissivity (intrinsic property of the surface, primarily depends on surface composition and is a 

gauge of the efficiency of a surface in radiating thermal energy in comparison to that of a 

blackbody at equivalent wavelength). ‘θ’ and ‘ϕ’ are view zenith and azimuth angles respectively. 

Rat↓ is the downward atmospheric thermal radiance. Rsc↓ is the downward solar diffusion radiance. 

(1-ε) represents the reflection. The last term of the above equation ρEτ is the direct solar radiance 

reflected by the surface.  
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Figure 1: Transfer of radiation from surface to sensor (Taken from Zhao-Liang Li et al., 2013.) 

 

1.4.1.2 Algorithm Overview  

The MIR radiance consists of two components, one is reflective and another is emissive.  

)3()(00'  TB
F

L mirmirmirmirmirmir 



  

Where, Lmir is the radiance in MIR channel, τ’
mir is two way transmission, τmir is one way 

transmission ρmir is the reflectance in the MIR channel, F0 is the incident solar flux at the top of 

the atmosphere, µ0 is the cosine of the solar zenith angle, εmir is the emissivity of the surface at 

MIR band, and T is the brightness temperature.  

T is computed by inverting the Planck function.  

)4()(11111111  TBL mmmm    
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Where, L11µm is the radiance measured in the 11 µm channel of INSAT-3DR, τ11µm is one way 

transmission, B11µm is the Planck function,  and  ε11µm is the emissivity of the surface at 11 µm. 

As the Earth’s surface is not transparent, so we can safely assume mirmir  1  and solve the 

above equations to retrieve MIR reflectance.  

)5(
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F

TBL

mirmirmir
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mir


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



  

The transmission functions depend on the temperature and water vapor in the atmospheric column.  

In the present version of the algorithm, we would assume the emissivities and transmittivities to 

equal to 1.0. This assumption should cause errors within acceptable limits i.e., ≤ 0.02 in reflectance 

units in the retrieved MIR reflectance.  

We would try and incorporate the more appropriate values of emissivities and transmittivities in 

the subsequent version of the algorithms.  

16.4.2. Operational retrieval Implementation  

The operational implementation of the retrieval process can be enumerated as follows:  

Step 1: Extraction of the radiance (of MIR and 11µm) and WV data. 

Step 2: Preprocessing of all the ancillary inputs in terms of bringing all the inputs on the same 

geometrical scale.  

Step 3: Computation of the MIR reflectance (reflected component) using analytic equations (4 

and 5, substituting value ot T from 4 into 5).  

 

16.5. Outputs  

Generation of surface reflectance for the MIR band of INSAT-3DR/3D Imager.  

16.5.1. Format of the output and the domain 

Geo-Tiff Image of Bottom of Atmosphere Surface reflectance and Top of Atmosphere Reflectance. 

 

16.6. Validation  

Validation is still pending and to be discussed with calibration/validation team of SAC. 

  

16.6.1. Data required  

Collocated MODIS/METEOSAT data of MIR band would be required for the comparison. 
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16.6.2. Methods of validation  

Collocated data of INSAT-3DR and MODIS/METEOSAT would be compared over various 

uniform targets of different reflectance, for example over soil, vegetation and over some bright 

targets.  

16.7 Technical issues (limitation etc.)  

Accuracy of the product will depend on the accuracy of the inputs. It would also be dependent on 

the calibration of the product. 

In the present version of the algorithm, we would assume the emissivities and transmittivities to 

be equal to 1.0. This assumption should cause errors within acceptable limits i.e., ≤ 0.02 in 

reflectance units in the retrieved MIR reflectance. We would try and incorporate more appropriate 

values of emissivities and transmittivities in the subsequent version of the algorithms. 

Emissivity/Temperature discrimination is not attempted in the present implementation.  

16.8 Future Scope  

Correction for the emission component and out of band correction in a more accurate manner 

would be attempted.   
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17. Potential evapotranspiration (PET) from INSAT 3D insolation 

product and short-range forecasts 
 

 

 

S. No. Product Name Spatial Resolution Temporal Resolution 

1 IMG_PET   
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17.1. Algorithm Configuration Information 

17.1.1. Algorithm name 

Potential evapo-transpiration 

17.1.2. Algorithm identifier 

INSAT_IMAGER_PET 

17.1.3.  Algorithm specification 

Version Date Prepared by Description 

1.0  Dr. Rahul Nigam  and  

Dr. Bimal K. Bhattacharya 

Potential evapo-

transpiration baseline 

document 

 

17.2. Introduction 

The process of evapotranspiration (ET) acts as one of the main drivers of the hydrological or water 

cycle. One of the distinguishing factors of ET is its role as a key player between the energy and 

water cycles. The potential ET rate (ETo) is influenced by several factors such as solar radiation, 

wind speed, air temperature and vapour pressure deficit. Among them, solar radiation is the most 

sensitive parameter influencing almost 60-70% variability of ETo . The potential evapo-

transpiration (PET), hereafter referred as grass reference evapo-transpiration (ETo), is expressed in 

terms of amount of water transferred per unit time to atmosphere from water non-limiting surface 

covered with a uniformly and actively growing short grass such as Alfalfa. ETo represents the 

evaporative demand of the atmosphere for a given climatic region. Deficiency in required supply 

of moisture leads to water stress. Reference evapo-transpiration is an agrometeorological variable 

widely used in hydrology and agriculture. Together with precipitation, it is a major input in soil 

water balance models. Several of these models require daily or hourly evapo-transpiration data to 

provide acceptable estimate of plants’ water requirements. This would provide regional water 

demand in different agro-climatic settings and agricultural growing season. The combination of 

spatial rainfall with ETo would help in monitoring water deficit and surplus during a growing 

season for rainfed agriculture. 

Some contours of monthly climatic ETo have been generated by Department of Agricultural 

Meteorology, IMD (India Meteorological Department) from measurements of limited surface 

observatories in India. But interpolation from such contours will propagate large errors. No digital 

map of ETo is available to scientific community, modelers, resource managers and planners in 

India. Moreover, real-time updated spatial ETo product at weekly, ten-day, fortnightly and monthly 

scales would aid in knowing the intra and inter-seasonal climatic variability of water stress factors 

and their impact on deviation in biomass and yield. The climatic moisture index (ratio of rainfall 



                     INSAT-3D Incremental ATBD (MMDRPS), November 2018                   201 

 

and PET) is essential to know surface wetness and suitability of sowing or transplanting operations. 

Therefore, it has the relevance for national agro-advisory services to farmers as well as crop 

forecasting. 

17.2.1. Overview and background 

The latent heat of vaporization, which is the energy required for evaporating water is significant 

in weather and climate dynamics (Priestley & Taylor, 1972; Monteith,1973; Rowntree, 1991; 

Anderson et al., 2007). Although the concept of “evaporation” has been known since 

approximately 500 B.C. (see Brutsaert, 1982 for a chronological sketch), most of the understanding 

of the governing factors has been achieved in the last two centuries. Dalton (1802) was the first 

who proposed relationship of vapor pressure deficit (esat−eact) of the near surface air to the 

evaporation rate. Later, many empirical relationships were developed based on other 

environmental factors (Blaney and Criddle, 1950; Hargreaves, 1975; Thornthwaite, 1948). Based 

on available energy considerations and turbulent flux theory, Penman (1948) developed his 

evaporation equation for natural surfaces for water non-limiting conditions. This is known as 

potential evapotranspiration (PET).  Monteith (1964) developed a modified version of the Penman 

equation in which biophysics was introduced through a surface or canopy resistance – the now 

well-known Penman–Monteith (P-M) combination equation – that allowed for vegetation control 

on transpiration rates.  

Choudhury (1997) proposed a method to assess by means of satellite data, such as remotely sensed 

solar radiation, air temperature (derived from infrared images and weather station measurements) 

and vapor pressure deficit. This method provides good evapo-transpiration estimates for low-

resolution applications such as worldwide scale and monthly time step. The accuracy is limited by 

the high uncertainties provided by satellite-sensed vapor pressure estimation. 

Later, Bois et al. (2008) used remotely sensed solar radiation from METEOSAT observations from 

Heliosat-2 approach (Rigollier et al. 2004) and air temperature data to estimate ETo using 

Hargreaves approach. The ETo can also be available as forecast bi-product from weather 

forecasting model. However, recent evaluation of predicted radiative fluxes and operational short-

range forecasts (24 hrs average) of routine weather elements from model for a limited winter 

months showed that the incident shortwave radiative flux produced the highest root mean square 

error to the tune of 110% (Bhattacharya et al, 2012a) amongst others as compared to in situ 

measurements from INSAT-linked micrometeorological stations (popularly known as AMS). 

However, the errors of short-range forecast of air temperatures, relative humidity, atmospheric  

pressure, wind speed at 10 m height were 3%, 12%, 21% and 1.4% respectively over plain and 

pleateu regions. The per cent RMSE for last four variables were found to increase in the hilly 

terrain (Bhattacharya et al, 2012a). Expectedly, the ET0 would have substantial errors propagated 

mainly from incident solar radiation flux estimation. on the other hand, the operational product on 

daily insolation from Kalpana-1 VHRR produced around 25% RMSE (Bhattacharya et al, 2012b) 

with respect to same ground reference and the per cent RMSE decreased with averaging over 



                     INSAT-3D Incremental ATBD (MMDRPS), November 2018                   202 

 

weekly, ten-day, fortnightly and monthly scales up to 15%. After improvement in the cloud 

flagging and the spatial resolution of operational insolation product from INSAT 3D, it is expected 

to produce substantially less errors. Therefore, it seems wise to use the combination of daily 

insolation product from INSAT 3D and operational forecasts of air temperatures, relative humidity, 

wind speed and atmospheric pressure to generate real-time digital and regional product of potential 

evapo-transpiration. 

17.2.2.  Objectives 

The objectives of this document are : 

 To outline the algorithm for the estimation of potential evapo-transpiration (ETo) based on 

Penman-Monteith (P-M) approach (FAO-56 model) 

 To integrate operational product of daily insolation from INSAT 3D and 24 hrs average 

operational forecast of routine weather elements at finer spatial resolution to generate 

product of spatial ETo at 5 km spatial resolution 

 To implement the algorithm in IMDPS GPR (Geophysical Parameter Retrieval) chain for 

automation of ETo product generation 

 To describe validation strategy against in-situ measurements with initial results 

 

17.2.3.    Instrument and characteristics of input products 

17.2.3.1 Indian geostationary satellite (INSAT 3D)  

The Indian National Satellite (INSAT) system is a joint venture of the Department of Space (DOS), 

Department of Telecommunications (DOT), and India Meteorological Department (IMD). INSAT 

3D is an exclusive meteorological satellite in the INSAT system, which was launched at 

geostationary orbit in 2013. This radiometer consists of four bands : broad VIS (0.52-0.75), SWIR 

(1.55-1.70), MIR(3.8-4.0), WV(6.5-7.0) and two thermal TIR1(10.2-11.2), TIR2 (11.5-12.5) with 

nineteen sounder channel. The spatial resolution of VIS and SWIR band is 1 km x 1 km and 4 km 

x 4 km for MIR, WV and two thermal IR bands. The introduction of INSAT Meteorological Data 

Processing System (IMDPS) provides both ‘full-globe’ and ‘sector’ data products in all the bands 

at half-an-hour interval at 4 km spatial resolution in an automated mode. So, there are maximum 

48 acquisitions on a given day. Raw data after reception at each acquisition were corrected for 

servo, line-loss, radiometry, stagger and oversampling removal using the INSAT 3D data products 

scheduler. This results into automated generation of co-registered data in each band at Transverse 

Mercator (TM) projection.  The dimension of each band at each acquisition is 676 rows x 721 

columns for Asia Mercator sector product.  
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17.2.3.2.  Operational insolation product 

A spectrally integrated clear-sky and three-layer cloudy-sky models were developed to determine 

integrated atmospheric transmittances and instantaneous insolation. Half-an-hourly observations 

from an Indian geostationary satellite sensor, INSAT 3D, were used to provide minimum ground 

brightness (surrogate of surface albedo) from previous 30 days, cloud top albedo, brightness 

temperatures, atmospheric water vapour as inputs to these models in addition to global eight-day 

aerosol optical depth at 550 nm and columnar ozone. A trapezoidal scheme was implemented to 

obtain daily insolation (in MJm-2) from half-an-hour instantaneous insolation (Wm-2) throughout 

the day for all-sky conditions (clear + cloudy). The whole algorithm (Bhattacharya et al, 2010 & 

2012b) will be operationalized  and daily insolation product can available at 4 km spatial resolution 

with Transverse Mercator projection routinely from MOSDAC site (http://www.mosdac.gov.in).   

17.2.3.3. Operational product of WRF short-range forecast 

Weather Research and Forecasting (WRF; Skamarock et al., 2008) Model version 3.1 is used for 

All India Short range weather forecast. WRF is a limited area, non-hydrostatic, primitive equation 

model with multiple options for various physical parameterization schemes. This version employs 

Arakawa C-grid staggering for the horizontal grid and a fully compressible system of equations. 

The terrain following hydrostatic pressure co-ordinate with vertical grid stretching is followed in 

vertical. The time-split integration uses 3rd order Runge-Kutta scheme with a smaller time step for 

acoustic and gravity wave modes. The WRF physical options used in this proposal consists of the 

WRF Single Moment 6-class simple ice scheme for microphysics (WSM6); the Grell-Devenyi 

ensemble cumulus convection parameterization scheme; and the Yonsei University (YSU) 

planetary boundary layer scheme.  

The WRF Model is integrated in a triple domain configuration with a horizontal resolution of 45 

km, 15 km and 5 km for the All India, with grid points 260×235, 352×373 and 676×721 in x and 

y directions for the domains 1, 2 and 3, respectively. The model has 36 vertical levels with the top 

of the model atmosphere located at 10 hPa. The WRF 3D-Var is used for the assimilation of all 

available conventional including ISRO-AWS data and satellite observations to improve the model 

initial conditions. The operational WRF short-range forecasts (Kumar et al., 2011), available at 

MOSDAC site used climatological land surface and atmospheric parameters from global database 

and assimilated all available conventional including ISRO-AWS and satellite observations (Kumar 

et al., 2011; Singh et al., 2011) from Indian and other International agencies (e.g. EUMETCast).  

The operational forecast is available at finer spatial resolution (~ 5km) at three hourly interval upto 

72 hours. 

Examples of operational daily insolation product and 24 hrs average WRF forecast product of air 

temperature, relative humidity, wind speed and atmospheric pressure over Indian region are shown 

in Figure 1. 

http://www.mosdac.gov.in/
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Figure 1. Example set of spatial inputs generated from WRF and K1VHRR for August 2011 
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17.3. Inputs 

17.3.1. Static data:    NIL 

17.3.2. Image and pre-processing data (Dynamic) 

Table 1 

Parameter Resolution Quantization Accepted 

accuracy 

Source 

Daily insolation product of 

Asia Mercator sector 

(e.g. h5 format) 

Pixel  

(4km x 4km) 

10-bit (integer) 

with scale factor 

of 0.01 

10-15% PR chain of 

IMDPS chain 

at BES 

Geolocation file containing 

latitude and longitude 

corresponding to coregistered 

INSAT 3D data 

Pixel wise 16-bit (floating 

point)  

Less than 

one pixel 

DP h5 

product  

 

17.3.3. Other auxiliary data and model inputs  

Table 2 

Parameters Source 

Operational three-hourly forecast output from WRF at 0.05° x 0.05° 

spatial resolution for the following parameters in ASCII format (latitude, 

longitude, parameter) 

Air temperature (K) at 2 m height 

Relative humidity (%) at 2 m height 

Atmospheric pressure (mb) 

Wind speed (ms-1) at 10 m height 

MOSDAC 

 

17.4. Algorithm functional specifications 

In 1948, Penman combined the energy balance with the mass transfer and derived an equation to 

compute the evaporation from an open water surface from standard meteorological records of 

sunshine, temperature, humidity and wind speed. This combination method was further extended 

to vegetated surface by introducing resistance term. The aerodynamic and surface resistances have 

been added to the original equation of Penman to estimate Potential evapotranspiration (ETo) from 
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a surface. This formulation is referred as FAO-56 Penman and Monteith (Allen et al., 1998) ETo 

for a day. This is treated as standardized model worldwide. This is described as follows: 

   
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34.01
273
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408.0
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




    (1) 

oET = = reference evapotranspiration for a day (mm day-1) 

nR  = net radiation at the crop surface (MJm-2day-1) 

G  = Soil heat flux (MJm-2day-1) 

T  = mean daily air temperature at 2 meter height (oC) 

2u  = wind speed at 2 meter height (ms-1) 

se  = satuation vapour pressure (kPa) 

ae  = actual vapour pressure (kPa) 

as ee   = saturation vapour pressure deficit (kPa) 

  = slope of vapour pressure curve (kPa oC-1) 

  = Psychrometric constant (kPa oC-1) 

hrT = mean hourly air temperature (oC) 

The above FAO Penman and Monteith equation is a close representation of the physical and 

physiological factors governing the evapotranspiration process. To compute ETo from FAO-56 

Penman-Monteith approach following intermediate inputs are calculated as follows: 

17.4.1.  Saturation vapour pressure (es)    

As saturation vapour pressure (SVP) is related to air temperature, it can be calculated as: 

  











3.237

27.17
exp6108.0

T

T
Teo  

)(Teo  = Saturation vapour pressure )(kPa at the air temperature T  

T = air temperature (oC)  

17.4.2. Slope of saturation vapour pressure curve (∆) 

The relationship between saturation vapour pressure (SVP) and temperature  , is required. The 

slope of the curve at a given temperature is given by:  

2)3.237(

3.237
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=  slope of saturation vapour pressure curve at air temperature  1CkPaT o   

17.4.3. Actual vapour pressure )( ae   

As the dewpoint temperature is the temperature to which the air needed to be cooled to make the 

air saturated, the actual vapour pressure (AVP) can be computed as follows: 

sa e
RH

e 









100
 

RH  = Relative humidity ( % ) 

se = Saturation vapour pressure )(kPa  

17.4.4. Psychrometric constant )(   

The psychrometric constant )( is given as: 

 P
PCP *000665.0


  

P = atmospheric pressure  kPa  

  = latent heat of vaporization (2.45 MJkg-1) 

PC = Specific heat at constant pressure (1.013 x 10-3 MJkg-1oC-1) 

e  = ratio of molecular weight of water vapour and dry weight (0.622) 

17.4.5. Extraterrestrial radiation  aR   

The radiation striking perpendicular at the top of the earth's atmosphere called the solar constant 

(0.082 MJm-2min-1). The local intensity of radiation is dependent on angle between the direction 

of Sun's rays and the normal to atmosphere. This angle will change within a day and with latitude 

on different days of the year. Solar radiation received at the top of the earth's atmosphere on a 
horizontal surface is called extraterrestrial (solar) radiation, aR . It is computed using astronomical 

units as listed by Iqbal (1983). 

          sSrSCa dGR 


sincoscossinsin
)60(24

  

aR  = Extra-terrestrial radiation [MJm-2day-1] 

SCG = Solar constant (0.82 MJm-2min-1) 

rd = inverse of relative distance between earth and sun 

S = Sunset hour angle (radian) 

  = Latitude (radian) 

 = Solar declination (radian) 
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17.4.6. Solar or shortwave radiation  sR  

The radiation penetrates the atmosphere, some of the radiation is scattered, reflected or absorbed 

by the atmospheric gases, cloud and dust. The amount of solar radiation reaching horizontal plane 

is known as the incident solar radiation at surface Rs. The Rs should be in MJm-2day-1. 

17.4.7. Net solar or net shortwave radiation  nsR  

The net shortwave radiation is net balance between incoming and reflected solar radiation in short 

wave range and is given by, 

Sns RR )1(   

nsR =net solar or shortwave radiation (MJm-2day-1) 

 = albedo which is 0.23 for reference grass (e.g. Alfalfa)  

SR = incoming solar radiation [MJm-2day-1] received at ground surface 

17.4.8. Net longwave radiation  nlR   

The longwave radiation emission is proportional to the absolute temperature of the surface raised 

to the fourth power as per Stefan-Boltzmann law. The net radiation leaving the earth's surface is 

however, less than emitted due to the absorption and downward radiation from the sky. The 

atmospheric constituents like water vapour, clouds, carbon dioxide and dust are absorbers and 

emitters of longwave radiation. Their concentration should be vital for assessing the net outgoing 

radiation. The Stefan-Boltzmann law is corrected for water vapour and cloudiness by assuming 

the concentration of other atmospheric constituents remain constant.  

   







 35.035.114.034.04

So

S
aKnl

R

R
eTR   

nlR = net outgoing longwave radiation [MJm-2day-1] 

 = Stefan-Boltzmann constant [4.903 X 10-9 MJK-4m-2day-1] 

KT = Mean absolute temperature (K) during a day  

ae = actual vapour pressure [KPa] 

So

S

R

R
 = relative short wave radiation (1) 

SR  = estimated solar radiation [MJm-2day-1] 

SOR = calculated clear sky radiation [MJm-2day-1] 
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 The term  ae14.034.0   expresses the correction for air humidity and becomes smaller if 

humidity increases. The cloudiness is expressed as 







 35.035.1

So

S

R

R
 and it becomes smaller if the 

cloudiness increases and hence SR decreases.  

The clear-sky radiation, SOR  is required for computing net long wave radiation 

  aSO RZR 510*275.0   

Z = station elevation above sea level (meter) 

aR = Extraterrestrial radiation [MJm-2day-1] 

The above equation is valid for station elevation less than 6000 m having low air turbidity. The 

equation was developed by linearizing Beer's radiation extinction law as a function of station 

elevation and assuming that the average angle of the sun above the horizon is about 50o.For areas 

of high turbidity caused by pollution or airborne dust or for regions where the sun angle is 

significantly less than 50o so that the path length of radiation through the atmosphere is increased, 

an adaption of Beer’s law can be employed where P is used to represent atmospheric mass: 








 


SinK

P
RR

t

aSO

*0018.0
exp  

tK  = turbidity coefficient, 0 < Kt ≤ 1.0 where Kt = 0.0 for clean air and 

Kt = 1.0 for extremely trubid, dusty or polluted air. 

P = atmospheric pressure [kPa] 

φ = angle of the sun above the horizon [radian] 

Ra = extraterrestrial radiation [MJ m-2 d-1] 

17.4.9. Net radiation  nR  

The net radiation  nR is difference between the incoming net shortwave radiation  nsR  and the 

outgoing net longwave radiation nlR .  

nlnsn RRR   

17.4.10.  Wind speed 

For calculation of ET0, wind speed measured at 2 meter above the surface is required. To adjust 

wind speed data obtained from instruments placed at elevations other than the standard heights of 

2 meter, a logarithmic wind speed profile may be used for such conversion. 

)42.582.67ln(
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
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z
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2u = wind speed at 2 meter above ground surface [m s-1] 

Zu = measured wind speed at z meter above ground surface [m s-1] 

z = height of measurement above ground surface [m] 

17.4.11. Flow chart 

Figure  2 

 

17.4.12. Steps for operational implementation 

The following steps need to be followed for operational implementation of Potential evapo-

transpiration product generation: 

 Daily (24 hours) average meteorological data are to be carried out by averaging 3-hourly 

forecast from WRF (ASCII format) at 0.05 o X 0.05 o spatial grid for all the four variables 

 Maximum , minimum air temperatures and relative humidity need to be generated from 3-

hourly forecasts in a given day 

 Conversion of all ASCII oouputs of (i) and (ii) to raster of dimension approx. 0.05o X0.05o 

grid resolution 

 Conversion of all INSAT 3D generated insolation ouput to raster of dimension approx. 

0.05o X 0.05o grid resolution 

 Repojection of operational daily insolation product present Transverse Mercator to 

geographic projection  

 Resampling of gridded insolation to WRF grid resolution followed by subsetting for India 

with same dimensions as that of WRF. 

 Integration of reprojected daily insolation and 2-D surface of WRF variables in to FAO P-

M model to generate regional spatial output of daily ETo is given in flow diagram (Fig.2). 
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17.5.  Outputs 

Table 3 

 

17.5.1.  Format of the output and the domain 

 

Table  4 

Parameter Data format Upper left and lower right 

corner coordinates 

Scan lines 

and columns 

Gains and 

offsets for 

converting 

actual values 

Daily Potential 

Evapo-transpiration 

output consist of  

ET0 

Latitude 

Longitude 

In HDF5 

format 

 

BYTE 

Floating-

point 

Upper left : 

68°E, 40°N 

Lower right : 

5°N, 100°E 

Indian 

domain 

(approx. 676 

x 721) 

 

 

Gain for ET 

data 0.1, 

offset zero 

 

 

 

  

Parameter Unit Min Max Accuracy Temporal  

resolution 

Spatial 

resolution 

Daily Potential Evapo-

transpiration output 

consist of  

ET0 

Latitude 

Longitude 

 

 

mmd-1 

 

 

 

0.5 

5°N 

68°E 

 

 

15 

40°N 

100°E 

 

 

80 to 90% 

Daily 

 

 

 

Ten-day 

 

 

~ 5 km 
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17.6. Validation of INSAT 3D generated daily Potential evapo-transpiration 

17.6.1. Data required 

Table  5 

Sensors Parameters Time scale Source 

Agro-Met 

Station 

(AMS) 

Radiation, routine 

weather variables 

Half-an-hourly 

basis 

MOSDAC & EME-VS project 

database 

MODIS MOD16 product 

containing Potential 

evapotranspiration at 1 

km 

Eight-day basis http://www.ntsg.umt.edu/project 

Reanalysis 

field 

Pot evap. Daily, monthly 

basis 

MEERA 2D / NCEP 

 

17.7. Study of Potential Evapo-transpiration with K1 VHRR data 

The spatio-temporal  pattern of monthly cumulative ETo for year 2011 is shown in Figure 3. The 

gradual increase and decrease was observed throughout the year with the seasonal transition. 

Monthly ETo linearly increased throughout India from January to June and then decreased in 

monsoon during July and August. After that, gradual rise in September coincident to higher 

insolation due to with drawl of monsoon. The ETo again decreases in October and November but 

there is rise in western part of India during December due to increase in day length in last dekad 

of December.  

17.7.1.  Sensitivity of P-M model to weather variables for error budgeting 

The sensitivity of P-M model ET0 was carried out by Bois et al (2008) using ‘Sobol’ method. It 

consists of numerous simulations of the models using two independent samples of ‘N’ repetitions 

(rows) and ‘k’ input variables (columns), retrieved from existing data or randomly generated data 

from the probability distribution function (PDF) of each ‘k’ input variable. One or several variables 

in the first sample are substituted by the same variable (s) taken from the second sample. For each 

of the (2k - 1) possible combinations of variable substitutions between the two samples, ‘N’ runs 

of the model are computed. The sensitivity of the model to input variables was based on so-called 

sensitivity or Sobol’ indices, which were calculated on the principle of the decomposition of the 

total variance (V) of the model output, in response to individual or simultaneous variations of the 

‘k’ model inputs. 
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Figure 3. Example of monthly distribution of ET0 from VHRR insolation and WRF forecasts over 

Indian region 

In oceanic climate, the results of monthly sensitivity analyses computed using Southwest area 

(SW) data show clear seasonal trends (Figure 4). During the winter period (from November to 

February), wind speed is the main source of variation in ET0 values calculated using P-M method 

(e.g. 38% of ET0 total variance in January). Then come relative humidity and air temperature (32% 

and 17% of ET0 total variance in January, respectively). Solar radiation, daily amplitude of air 

temperature and daily amplitude of relative humidity have little impact on evapo-transpiration 

process during winter. This trend changes during March and October. From April to September, 

ET0 is mostly sensitive to solar radiation (up to 74% of ET0 total variance in May, and 70% in 

July). From May to July, P-M formula is not very sensitive to relative humidity, air temperature 

and their diurnal amplitudes. Mean daily air temperature participate from 11% to 15% of ET0 

variance, from May to September. Total sensitivity indices show that, when added to other 

variables’ variations, air temperature has a greater impact on ET0 variability during summer, and 

wind speed has a greater impact during winter (Figure 4B).  

In Mediterranean climate, sensitivity of ET0 computation to climate input variables using P-M 

method in Southeast area (SE) is very close to the one observed. Wind speed as a major impact on 
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ET0 calculation during winter and solar radiation is clearly the most influent variable during 

summer (Figure 4C and D). The present analysis highlights the great sensitivity of this Penman–

Monteith formula to solar radiation during summer period, when ET0 reaches its highest values, 

and when its calculation is critical for irrigation process and ecological modelling. These results 

were obtained for Mediterranean and Oceanic climate, at medium latitudes. A recent work 

published by Gong et al. (2006) on a large range of climatic conditions in Southern China leads to 

similar results, except for relative humidity which had a greater impact on ET0 during winter than 

it has been shown in the present study. Considering the results of Penman–Monteith sensitivity to 

solar radiation, it seems reasonable to evaluate the benefits of satellite-sensed solar radiation to 

ET0 calculation.  

 

Figure 4. Plots of sensitivity indices (A–C) Southwest area (SW). and (D–F) Southeast area 

(SE) of ET0 to different climatic variables 
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17.7.1.1.   Preliminary comparison with in-situ measurements 

The daily insolation product (Bhattacharya et al., 2012b) from K1VHRR available through 

MOSDAC (Meteorological and Oceanic Satellite Data Archival Centre) for the period January 1, 

2011 to December 31, 2011 to derive radiation parameters and other routine inputs from WRF 

forecast were ingested into P-M model to generate daily, dekadal (ten-day) and monthly ET0 

estimates at regional scale following the steps mentioned in section 4.12. To validate satellite based 

regional ETo estimates, the measurements from INSAT-linked AMS (Agro-Met-Station) data were 

used (Bhattacharya et al, 2009). The AMS provides all radiation and meteorological variables at 

30 minutes interval and represent a fetch area of 1 km x 1 km. The AMS data from six sites over 

different agro-climatic zones were used to compute ETo on daily basis for different time period as 

listed in Table 6. The ETo was calculated on daily basis using AMS half-an-hour average 

measurements.  

Table  6. Details of AMS stations and data used 

Station Name Time period Agro-climatic 

region 

Latitude Longtitude 

Naraingarh Farm, 

PAU 

(Punjab) 

1Jan to 20 

April 

 

Trans gangetic 

plain region 

30036'44.92''N 76019'17.75''E 

BCKV(W. Bengal) 1Jan to 7 June Lower gangetic 

plain region 

22041'53.46''N 77044'5.06''E 

Jaisalmer 

(Rajasthan) 

11 July to 30 

Sept 

Western dry 

region 

26050.83'N 71018.083'E 

Pawerkheda 

(Madhya Pradesh) 

1 Jan to 8 June Central plateau 

and hill region 

22041'53.46''N 77044'5.06''E 

LPSC Mahendergiri 

(Tamil Nadu) 

1 Jan to 7 Dec Southern plateau 

and hill region 

8017'53.89''N 77033'21.77''E 

Diglipur (Andaman 

& Nicobar) 

15 Feb to 8 

Dec 

Island region 13015'25''N 9300'27''E 
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17.7.1.2. Validation results 

A. Daily scale 

Daily ETo estimated using P-M approach was compared with daily ETo computed from AMS 

measurements for different agro-climatic regions as listed in Table 6. The 1:1 plot is shown in 

Figure 5 and temporal comparison is shown in Figure 6. The daily ETo computed from AMS varied 

from 0.7 mm to 12.0 mm while satellite derived ETo varied from 1.1 to 11.7 mm over different 

seasons for selected stations. The error analysis showed the root mean square deviation (RMSD) 

varied from 1.13 to 3.82 mmd-1 to the tune of 21 to 38 % of measured mean over six stations (Table 

7). The overall pooled data set showed RMSD of 1.34 mmd-1 with 29% deviation from measured 

mean. This was due to high fluctuation of ETo on daily temporal scale as shown in Figure 5 for all 

six AMS stations. The estimated daily ETo showed underestimation as well as overestimation for 

all AMS stations but extent of temporal pattern matches quite well in all the stations.  
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Figure 5. 1:1 scatter plot between daily ETo from AMS and estimates from satellite and WRF 
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Figure 6. Comparison of temporal profile of daily ETo from AMS and spatial estimates 
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Table  7. Error statistics for daily ETo 

Station name N RMSD RMSD(% of 

AMS mean) 

MAB 

Naraingarh Farm 

(PAU) 

108 1.1 38.1 0.9 

Chakdah 

(BCKV) 

136 1.2 31.1 1.0 

Pawarkheda 157 1.3 21.5 1.1 

Jaisalmer 85 1.4 22.8 1.1 

LPSC 265 1.5 31.1 1.8 

Diglipur 226 3.8 33.0 1.0 

Overall 977 1.3 29.0 1.0 

 

RMSD (Root Mean Square Deviation) =
N

OP
i

ii  2)]()[(

 

MAB (Mean Absolute Bias) = 
N

OPABS
i

ii  )]()[(

 

Where Pi – PETAMS at ith case 

 Oi= PETestimated at ith case 

 N= number of daily paired datasets 

B. Dekadal scale 

The daily ETo fluctuation was high and leads to high deviation from measured AMS mean so data 

were summed for 10-days for further analysis. The 10-days cumulative estimated ETo was 

validated with cumulative ETo from AMS data. The temporal 10-day ETo over different stations 

are shown in Figure 7 for six selected stations and error statistics are given in Table 8. The dekadal 

change in estimated ETo matched well with AMS ETo. The seasonal change was also well captured 

in 10-day cumulative ETo.  

In Naraingarh, Punjab, the comparison was made for the period from January to April. In January 

and February, ETo remained low in the range of 16 mm to 24 mm due to low radiation and 

temperature. It started rising in March and reached up to 62 mm per dekad. The rise and fall of 

computed ETo was well captured in estimated ETo during January to April. The RMSD was 9.3 
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mm which is 28.9% of AMS mean for the stated period. The 1:1 scatter (Figure 8) showed a 91 % 

correlation.  

Table  8. Error statistics for dekadal (10-day) ETo 

Station Name N RMSD RMSD (%of 

AMS mean) 

MAB 

Naraingarh, Punjab 14 9.3 28.9 8.2 

Chakdah, W.B. 14 10.5 27.4 9.1 

Pawarkheda, M.P. 15 10.4 18.6 8.9 

Jaisalmer, Rajasthan 8 6.3 10.2 5.8 

Mahendragiri, T.N. 30 9.4 21.4 8.2 

Diglipur, A.N. 22 9.3 25.0 8.4 

Overall 99 9.5 21.6 8.3 

N= number of dekadal paired datasets 

The site in West Bengal represents lower gangetic plain of agro-climatic regions having moderate 

cold season of January and February to moderate hot season during March and April. During this 

period rabi rice is grown with available irrigation facility. The dekadal temporal profile of 

estimated ETo matched well with AMS ETo but showed small amount of deviation during April. 

This may be due to application of irrigation water in rice crop and was only captured in computed 

ETo from AMS but not reflected in estimated ETo. The temporal variation of dekadal ETo was 28 

to 30 mm in January with gradual rise in February. The maximum ETo was observed in April due 

to rise in temperature and radiation load. This seasonal change of ETo was well captured in the 

estimates.  The overall RMSD was found to be 10.5 mm (27.4 % of AMS mean) on January to 

April with respect to AMS.   

The central plateau and hill agro-climatic region is represented here by AMS at Powarkheda site. 

The area falls under the catchment of Narmada where annual rainfall varies from 800 to 1200 mm. 

The wheat crop is dominant during rabi season. The estimated dekadal ETo estimates matched well 

throughout January to May. The dekadal high and low value matched quite well and estimated ETo 

always remained high as compared to AMS ETo up to March during growth of wheat crop. After 

that, estimated ETo underestimated measured ETo.  In January, both showed low values in the range 

of 30 to 37 mm and 35 to 46 mm but goes up to 97 to 103 mm (AMS) and 82 to 94 mm (estimated) 

in May. The temporal profiles matched quite well and showed RMSD of 10.4 mm over ten days 

(16.6% deviation from AMS mean). 

The typical Indian arid region lies in western, dry agro-climatic region and represented here by 

Jaisalmer. The climate remains hot throughout the year except in January and February. The data 

over  monsoon season (July, August and September) were used for computation of ETo. In this part 
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of India, S-W monsoon starts in July and it was well captured by dekadal ETo variation during 

stated months. During July, ETo remained higher but later in the season it reduced in both the cases. 

The satellite estimated ETo showed both underestimation and overestimation for selected season 

as compared to AMS. The temporal profile of ETo of two followed the same pattern. The RMSD 

of 6.3 mm was found for monsoon season which is 10.2% with respect to AMS ETo.  

The southern part of India, AMS located in LPSC Mahandragiri represents the natural scrub 

vegetation. The AMS data for January to May and August to November were used for comparison 

with AMS ETo value. The temporal profile of dekadal ETo matched well with AMS ETo. The 

difference between two was maximum during north-east monsoon season (January to February) 

but later on, the difference was reduced further in May and November. The data showed a RMSD 

of 9.4 mm (21.4% deviation of measured AMS mean).  

The island agroclimatic region of Andaman & Nicobar have different climatic conditions as 

compared to above stated regions. As this region is surrounded by Bay of Bengal so climatic 

condition remains humid throughout the year. The data from March to May and August to 

November were used for comparison. The AMS ETo on an average had a range of 23 to 50 mm 

throughout the selected time domain. Similar order of magnitude was observed for estimated ETo. 

The dekadal behaviour of estimated ETo matched well with AMS ETo but showed little higher 

deviation during August and September. It showed RMSD of 9.3 mm (25.0% of AMS mean).      
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Figure 7. Temporal profiles of dekadal sum of potential evapotranspiration (ETo) computed 

from AMS and fusion of satellite and WRF data. 
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Figure 8. 1:1 Scatter plot between dekadal PET computed from AMS and with spatio-temporal 

estimates. 
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17.7.1.3. Error analysis of ETo for variable-time accumulation 

The daily estimated and AMS ETo was compared for different time windows viz. 3-day, 5-day, 7-

day and 10-day. The correlation coefficient between estimated and measured ETo gradually 

increased from daily to 10-day but maximum increase was observed from daily to 7-day i.e from 

8% to 23% for six AMS stations. The rise of correlation coefficient from 7-day to 10 days was 

nominal in Nariangarh (PAU) (0.7%), Chakdah (BCKV) (2%), Pawarkheda (2.3%) and Jaisalmer 

(6.3%) as compared to LPSC (Mahandergiri) (13.8%) and Diglipur (12.6%) as shown in Figure 8. 

Similarly per cent deviation from mean of AMS measurements also showed a similar trend as the 

deviation drastically came down from daily to 7-days and further nominal decrease in 10-day 

except than in Jaisalmer. For the latter, it decreases from 14.8% to 10.2% for 7 to 10-days as 

marked in Figure 9. The analysis showed that error was significantly reduced from daily to 7-days 

and further in 10-days over different agro-climatic zones. This will help us use this ETo data in 

various applications on different time scales with known errors.      

  

   

Figure 9. Error analysis of ETo for variable-time accumulation 

17.7.1.4. Comparison of errors from similar studies elsewhere 

Considering the results of Penman–Monteith sensitivity to solar radiation, it seems reasonable to 

evaluate the benefits of satellite-sensed solar radiation to estimate spatial ETo as no regular spatial 

record are available for solar radiation. Choudhury (1997) attempted monthly global ETo at 0.25o 

x 0.25o from P-M method using solar radiation from International Satellite Cloud Climatology 

Project (ISCCP). He derived vapour pressure and vapour pressure deficit (VPD) from TIROS 

operational vertical sounder TOVS data with air temperature based on interactive GCM forecast 
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retrieval assimilation system applied to the TOVS data. He has compared the estimated ETo with 

lysimeter data and on monthly scale the error was found between 15 to 40% from measured mean.  

Bois et al. (2008) used remotely sensed solar radiation and weather data from AWS equipped with 

humidity, thermal sensors and cup anemometer to estimate ETo using FAO-56 P-M  method. They 

used the solar radiation prepared from Meteosat data by following Heliosat-2 method (Rigollier et 

al. 2004). The study found that most of the errors occurred in partial cloudy days due to 

uncertainties in retrieving daily solar radiation. On daily scale, the RMSD was between 0.34 to 

1.32 mm (11% to 110% from daily mean) but on annual scale the RMSD remained low (11% of 

ETo mean value) at 0.05o X 0.05o spatial resolution. This error again came down to (9.1% to 5% 

of ETo mean value) during clear days in summer.  Our study was unique as we used operational 

product of K1VHRR insolation WRF 3-hourly forecast for at 0.05°grid for estimation of ETo at 

0.08o X 0.08o. On daily scale, RMSD  was 1.1 to 3.8 mm (21% to 38% from measured mean) but 

it came down to 10% to 28% from mean on dekadal time scale and further in monthly scale (21% 

from monthly mean). The overall error at different temporal domain were found in good harmony 

with reported errors in other part of world.   

17.8. Sources of errors / uncertainties in ETo estimates and validation issues  

The following sources of uncertainties were traced out while evaluating spatial output of ETo 

estimates and its comparison with ground reference 

(i) Influence of vegetation in AMS 

The FAO 56 P-M method is generally applied for a specific site using meteorological and radiation 

data from meteorological observatories or AWS weather data including direct measurement of 

radiation. In India, ISRO-AWS does not provide solar radiation data in terms of standard energy 

units. IMD AWS provide data with some lag period. The sensitivity analysis of P-M method by 

Gong et al. (2006) and Bois et al. (2008) highlighted that solar radiation and wind speed were 

clearly the most influent variables for ETo estimation. The pyranometer and routine weather data 

from AMS are used. But these measurements were recorded over different vegetation cover types. 

Since vegetation growth influences ambient weather conditions, the ETo computed from AMS 

would definitely have differential vegetation influence when compared to ETo estimates from 

integration of satellite based solar radiation and WRF forecast weather variables.  

(ii) Scale mismatch 

Spatial ETo was generated at approximately 8 km spatial resolution with 64 km2 pixel area      while 

the average footprint of AMS varies from 0.25 to 1 km2. This scale mismatch puts constrain in 

validation statistics. But this scale mismatch will reduced with INSAT 3D.  
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(iii) Difference in time sampling 

For spatial ETo, daily solar radiation was generated from diurnal observations at instantaneous 

snapshots with half-an-hour interval from satellite platform. But half-an-hourly averages from 

AMS measurements were used to generate validation datasets 

(iv) Accuracy in cloud flagging  

The product version of surface insolation algorithm has cloud detection capability of 

approximately 80%. It could not detect thinner clouds. Therefore, ETo estimates have higher errors 

during the period more cloudy spells or for AMS sites with higher cloud dynamics such as Diglipur 

(A & N), LPSC, Mahendragiri etc. 

(v) Quality of WRF forecast 

An initial evaluation of WRF forecast quality showed an average error to the tune of 1-2°C, RH of 

5-10% as compared to large error in wind speed and predicted radiation terms. The inherent errors 

in first three variables will have implications on the overall error budget. 

17.9. Future scope of improvement  

Recent improvement has taken place in the cloud detection of INSAT  3D insolation algorithm 

using additional criteria based on cloudiness index from VIS band observations. Much of the 

uncertainties in insolation and ETo estimates in cloudy-skies will hopefully be improved. 

Recent study on impact of updated vegetation fraction from INSAT 3A CCD showed improvement 

in air temperature, humidity and rainfall forecast from WRF. The use of real-time satellite based 

other land surface products such as albedo, LAI and soil moisture would definitely help in 

improving the quality of operational forecasts. Future work should address the retrieval / 

estimation of those variables from Indian geostationary satellites.  

The INSAT 3D will provide relatively finer spatial resolution of observation of insolation. This 

would reduce the scale mismatch uncertainty for validation. 
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